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Ancient problem, modern solutions

Historical ciphers Symmetric cryptography Public key cryptography
® Polybus (150 B.C.) ® One-time-pad (1917) ¢ Diffie, Hellman (1973)
® Caesar (50 B.C.) ® Enigma (WWII) ® Rivest, Shamir, Adleman (1977)
® Vigenere (1586) e DES/AES (1977/2000) e EdDSA (2011)
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Modern cybersecurity goals

¢ Confidentiality: the information is only available to the intended recipient.
¢ Integrity: the information has not been modified after being sent.

¢ Authenticity: the information was sent by a specific, authenticated sender.
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The public key revolution

$ “$1M -Bob”
® How to oneself over an untrusted network? Eve
® How to verify over an untrusted network?

Bob

Solution: Public key cryptography

® Bob generates a key pair: a , and a [public key| available to all
®* Bob his message with his
® public key| enables Alice to verify Bob's of the message

Can Eve pretend to be Bob?

2/23



New revolution: Post Quantum Cryptography

Signatures in protocols

® TLS: create a channel over an

untrusted network. % in your browser

® DNSSEC, SSH, ...

3/23



New revolution: Post Qu

Signatures in protocols Quantum threat

® TLS: create a secure channel over an If Eve has a large quantum computer, she can
untrusted network. @ in your browser compute in these protocols [Shor 94].
® DNSSEC, SSH, ... Can we obtain Post-Quantum TLS?

Source: IBM Research.
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Signatures in protocols Quantum threat
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Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an algebraic equation
is a geometric object called a variety.

2X+7Y =0
3X+1Y =0

Polynomial system solving is NP-hard

® Testing a solution is easy: “Is (1,0) a solution?”

¢ Finding a solution is hard in degree at least two. see [Garey, Johnson 1979]

Polynomial time algorithms for many linear algebra problems. 4/23
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Unbalanced Oil and Vinegar

Multivariate signature schemes: a template
® Public key: a system of polynomial equations of degree two — Hard to solve
® Signature: a solution of the public system of polynomial equations

® Verification: testing that a solution is correct — Easy to verify

Oil and Vinegar

Private key: reduce to the linear case  [Patarin '97]

Y,Z X
Z — XY = 0. —

/ ’\
Set X =1, then the polynomial is linear 7

(1,0,0) + R(0,1,1).
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Unbalanced QOil and Vinegar

Multivariate signature schemes: a template

® Public key: a system of polynomial equations of degree two —— Hard to solve

® Signature: a solution of the public system of polynomial equations

® Verification: testing that a solution is correct — Easy to verify
Original (U)OV formulation
Private key: polynomials fi, ..., f, € Fg[Xi,...,X;] linear in Xi,...,X,, A€ GL,(Fg).

Public key: polynomials p1, ..., pm € Fo[X1,..., Xs], with pj = XT - P;- X = f; 0 A.
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Unbalanced QOil and Vinegar

Multivariate signature schemes: a template

® Public key: a system of polynomial equations of degree two —— Hard to solve

® Signature: a solution of the public system of polynomial equations

® Verification: testing that a solution is correct

— Easy to verify

Original (U)OV formulation

Private key: polynomials fi, ..

Public key: polynomials p1, ...

Private polynomial
F1 € (Fas7)™"

© 0 f;n S ]Fq[Xla ..

., Xn] linear in Xq,..., X,, A€ GL,(Fy).

,meFq[Xl,...,X,,LWith p,':XT-P,'~X:f;-OA.

v il

Ac GLn(IF257)

TG S A

#| Public polynomial
P1 € (Fas7)™"
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Direct attack n,m Uov Caneri Dimension, degree and degree

degree d + 1

. .. . . K 10,4 6,16,6 6,16,6 of regularity for systems in n
With Grébner basis algorithms, public systems s | 7327 730 7 | variables and m quadratic
are indistinguishable from random systems. 15,6 | 9, 64, 8 0, 64, 8 | equations.

17,7 | 10,128, 9 | 10, 128, 8 6/23
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Exploiting the geometry of UOV

Original UOV formulation

Private key: polynomials fi,. .., fm € Fo[Xi,..., X,] linear in Xy,..., X,

Private key: there exists a linear subspace O C V(Z), dim O =o.  [Kipnis Shamir 1998]
Public key: pi1,...,pm € Fg[X1,..., Xal, Z=(p1,---,Ppm),A € GLy(Fq), pi=FfioA

[Kipnis-Shamir 1998] [Kipnis, Patarin, Goubin 1999]

® n=20: O is an invariant subspace of some public matrix.
Polynomial-time attack, by computing O(1) characteristic polynomials.

® n > 20: O contains eigenvectors of some public matrices with probability ~ g?°~".
Exponential-time attack, by computing O(q"~2°) characteristic polynomials.
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Tangent spaces of the UOV variety

Public key: polynomials p1,. .., pm € Fg[X1,..., X3, Z = (p1, ..., pm) radical, codimZ = m.

Private key: a linear subspace O C V := V/(Z), where V is an equidimensional variety.
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Public key: polynomials p1,. .., pm € Fg[X1,..., X3, Z = (p1, ..., pm) radical, codimZ = m.
Private key: a linear subspace O C V := V/(Z), where V is an equidimensional variety.

Can we distinguish points of V' \ O from points of O?

® YES, there exists a polynomial-time algorithm deciding x € O.

® As a byproduct, recover the full private key from one vector.

[Ding, Yang, Chen, Chen, Cheng 2008]
Given one vector x € O and P, compute a basis of O in time exponential in n, m.
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Tangent spaces of the UOV variety

nput: a point x €

Geometric observation

A linear subspace is tangent to itself.
Vxe O, OCT,V

The tangent space of V at x € V' is
TxV = ker(Jacp(x))
opr .. Om

oX1 0X,
Jacp(x) = | :

9pPm . 9pm

0Xq X,

Algorithm

Compute the restriction of P to T, V. Matrices have low rank if and only if x € O.
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Consequence: One vector to rule them all

ained for

Given one vector x € O and P = (p1, ..., pm), compute a basis of @ in polynomial-time
O(mn*), where 2 < w < 3 is the exponent of matrix multiplication.
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Consequence: One vector to rule them all

Contribution: more than we bargained for

Given one vector x € O and P = (p1, ..., pm), compute a basis of @ in polynomial-time
O(mn*), where 2 < w < 3 is the exponent of matrix multiplication.

Security level I I Il \%
n, m 112, 44 | 160, 64 | 184, 72 | 244, 96
Time 1.7s 4.4s 5.7s 13.3s
[DCCCY 08] (gates) 2% 2% 27 2%
This work (gates) 23 2% 236 2%

[Ding, Yang, Chen, Chen, Cheng 2008]

Given one vector x € O and P, compute a basis of O in time exponential in n, m.

Complexity estimates and practical results with SAGEMATH.
Experimental hardware: Intel i7 running at 2.80GHz with 8GB RAM.

Implementation available under MIT licence.
See also: [Aulbach, Campos, Kramer, Samardjiska, Stottinger 2023] 10/23
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Singular points of UOV and VOX

Limits of our previous result and locality of the UOV secret

Not a full attack: require side-channel or cryptanalysis to obtain a vector x € O.

The points of V(Z) \ O give no information on O (or even its existence).

Questions

® Can we leverage tangent space structure in a key recovery attack?

® Consequences for UOV variants submitted to NIST?

® YES, one obtains an algebraic variant of the Kipnis-Shamir attack [KPG '99].
® Attack does not break UOV, but applies succesfully to UOV+/VOX.

11/23



Singular points and dimension of the tangent space

Tangent space and Jacobian matrix

Assume V' equidimensional and Z radical.

The tangent space to V' at x is the kernel
of the Jacobian matrix evaluated at x.

E:Y?2-X343X—-2=0.
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Singular points and dimension of the tangent space

Tangent space and Jacobian matrix

Assume V' equidimensional and Z radical.
The tangent space to V' at x is the kernel
of the Jacobian matrix evaluated at x.

Jace(X,Y) = (9£,9E) = (—3X2 +3,2Y).
Jacg(1,0) = (0,0).

Singular points and tangent spaces

x € V is singular if the Jacobian matrix

evaluated at x has a rank defect. E-Y2_X343X_2—0.
[KS'98] computes singular points of the intersection of two quadrics [Luyten 23]
[KPG'99] computes singular points of V(Z) Beullens, Castryck 23

12/23



Structured equations yield a structured Jacobian
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Private key F: m polynomials in Xq,...,X,, alinearmap A: 1 <i<m, p;j="*foA
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Structured equations yield a structured Jacobian

[Kipnis, Patarin, Goubin 1999]

Private key F: m polynomials in Xq,...,X,, alinearmap A: 1 <i<m, p;j="*foA

Secret Jacobian

The Jacobian of F has a special shape when evaluated at x € O:

Xy -+ 90X, OXot1 o OX,

Jacr(x) = I

Where J; € Fo[Xog1,- -, Xa]™*° and Jy € Fo[ X, ..., X,]™*(=0).

Main theorem: Dimension of the singular locus of V/(Z)

UQV varieties admit a singular locus:
dim Sing(V(Z)) > 2dimO +m—n—-1

13/23



An algebraic attack targeting singular points

Generic smoothness outside of the secret subspace O

For a UOV variety, Z is radical and V/(Z) is equidimensional of codimension m.
In addition, Sing(V/(Z)) C O (if the base field is large enough).
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An algebraic attack targeting singular points

Generic smoothness outside of the secret subspace O

For a UOV variety, Z is radical and V/(Z) is equidimensional of codimension m.
In addition, Sing(V/(Z)) C O (if the base field is large enough).

Singular point attack

Perform an exponential time key recovery by computing singularities of the public key.

Geometric interpretation of an old attack

[KS'98/KPG'99] are (hybrid) singular point attacks. Weaken hypotheses and support
heuristic analysis by estimating |Sing(V/(Z))|r, with the Lang-Weil bound.

However, is more expensive than [KPG99] if g is “small".
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Can the singularities be hidden to prevent attacks?

[Faugere, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace t < 8 polynomials by , then mix.
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In a UOV private key, replace t < 8 polynomials by random quadratic polynomials, then mix.
P=8oFoA ZI={(p1,-..,Po)-
Analysis: O ¢ V(I) = key attacks on UOV+ must invert S.

Geometric interpretation

V(Z) is the intersection of a UOV variety

with t generic quadrics. QQ
V()= V(@) n V()

~—— ~——
Generic quadrics ~ UOV variety
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Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian

Jacobian of F when x € O:
0Xy -+ 0Xo 0Xoy1

K

Jacr(x) = J

Jacp(X) = S Hacr(AIX) - AL

Observation

The singular locus of V(Z) contains (SingV/(J)) N V(G).

Dimension computation

+ reduces the dimension of the singular locus by at most 2t compared with UOV.

16/23
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From singular points to a key recovery attack

V(Z) is the UOVH public key variety, V() is the underlying UOV variety.

Singular points (still) leak the trapdoor
Sing(V(Z)) c Sing(V(J)) Cc O

Singular points of V/(7)
~ q3°~2t="=1 singular points of V/(Z), and P(x) = 0, with g°~! candidates.

Expected cost: O(g"~°+2tn¥). Same as Kipnis Shamir [KPG'99] attack against UOV T,

Singular points of V/(7)

~ A30—t—n—1
~q

Expected number of trials: O(q"~2°"*) but P(x) # 0.

singular points of V/(J), with g°! candidates.

Can we decide “x € O7" faster than O(g'n“)?

17/23
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Adapting “x € O?” to UOV{ efficiently

Previous result for UOV

Decide x € O7 in polynomial time: x € O — O C T, V.

Tangent spaces again

x € O — OnN T,V has large dimension.

Restricting to the tangent space T,V

P7.v(x) is an easy UOV+ instance if x € O.
—— Decide in polynomial time.
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New attack on UOV{/VOX

x € O7? in polynomial time

Decide x € O? using O (("_°+2t_3)2(”_2°;“2t+1)> C O(n'?) arithmetic operations.

4
Singular points attack and asymptotic result
Singular points of V() leak the trapdoor S.
0| grzore. (n 204263 *In—20+2t+1
—_——— 4 2

# trials
Cost of each trial from xeO?

Previous result

This attack improves the Kipnis-Shamir attack which required:

O(qn72o+2tnw) 10/23



Practical results and bit complexity

Parameters | 11 V
239 241 243

log, gates
Time 23s | 7.1s | 16.4s

Figure 1: x € O7 with msolve! on UOVE.
Intel i7 @ 2.80GHz, 8GB RAM.

Imsolve.lip6.fr Implementation under MIT licence
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Figure 1: x € O? with msolve! on UOV{.
Intel i7 @ 2.80GHz, 8GB RAM. Figure 2: Full attack on UOV+.

Imsolve.lip6.fr Implementation under MIT licence

Cryptanalysis

* Initial UOVF parameter sets do not meet NIST security requirement.

* We propose alternative parameters for UOV achieving between 27%-44% (expanded)
public key size reduction compared with UOV.
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Parameters | I V Parameters | 11 \Y
239 241 243 2143 2207 2272

log, gates Security level (log, gates)

Time 23s | 7.1s | 16.4s Kipnis-Shamir (log, gates) || 2160 | 2233 | 2313
2140 | o188 | 5243

N Thi k(I t
Figure 1: x € O? with msolve! on UOV{. s el ({5, gEies)

Intel i7 @ 2.80GHz, 8GB RAM. Figure 2: Full attack on UOV+.

Imsolve.lip6.fr Implementation under MIT licence

Cryptanalysis

* Initial UOVF parameter sets do not meet NIST security requirement.

* We propose alternative parameters for UOV achieving between 27%-44% (expanded)
public key size reduction compared with UOV.

Special case of UOVS called VOX with additional structure was submitted to NIST.

Can we exploit that structure to improve our attack? 20/23
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QR compression enables big field attack: UOVE(q%, m/¢,n/¢, m, t) defines a variety that
contains O N V/(G) but it should be the empty variety for a generic system.

MinRank attack [Furue, lkematsu 2023]

Direct attack [P. 2024b]
Parameters | I V
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Practical attack on VOX

Dimension computation for VOX, seen as QR-UOV+ (g, n, m, t, £)

QR compression enables big field attack: UOVE(q%, m/¢,n/¢, m, t) defines a variety that
contains O N V/(G) but it should be the empty variety for a generic system.

Subfield attack

MinRank attack [Furue, lkematsu 2023] Alternative parameters exposed to direct
Direct attack [P. 2024b] attack through subfields ]qu C Fee.
Parameters | Il V Ic Ia Vb
l 6 7 8 9 15 14
v 6 7 8 3 5 7
Time 0.03s | 0.11s | 0.32s 400h! || 83.4s | 12.4s

Timing for the subfield attack on VOX, on Intel i7 @ 2.80GHz 8GB RAM with msolve.

Implementation available under MIT licence.

Lon Intel Xeon E7-4820, at 2.00GHz, peaking at 54.3GB RAM usage. .



Future and on-going work - 1

Task: Reduce MQ(n, m) to MQ(m — k, m — k).
For UOV, k =1 in any field [Cheng, Hashimoto,
Miura, Takagi 2014]. Can we go k=17
— WIP: Adapt work of Reid for k = 2.
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Future and on-going work - 1

Linear polynomials in Grobner bases

If J radical and V(J) C O, then DRL Grébner
bases of J contain linear polynomials.

Task: Reduce MQ(n, m) to MQ(m — k, m — k).
For UOV, k =1 in any field [Cheng, Hashimoto,
Miura, Takagi 2014]. Can we go beyond k =17 Generators B ——
— WIP: Adapt work of Reid for k = 2. degree d generators

linear

. t
Grobner basis Reductions &
Are non-generic UOV keys weaker? Xi-g algorithm

i Tell A Faugere'98 '02
Generalize genericity results to all UOV variants. augere'98

—— ex: non-radical ideal implies easier attack? Rewriting rules
degree d + 1

non-zero
no new
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Future and on-going work - 2

Cryptanalysis of MAYO

Small dimension of secret subspace defeats
UQV attacks.

® Algebraic structure induced by MAYQO's
whipped-up transform?

® Exploit large pre-image of signatures in
EUF-CMA attacks?

Signature (bytes) | Public key (bytes)
UOV-Ip 128 43 576
MAYO-1 454 1420
MAYO-2 186 4912

Figure 3: Sizes at security level one.
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Figure 3: Sizes at security level one.

Polar varieties of UOV

V = V((p1, P2, p3))
crit(ma, V) := {x € V, dxma not surjective}
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Cryptanalysis of MAYO Polar varieties of UOV

Small dimension of secret subspace defeats V = V((p1, p2, p3))
UQV attacks.

crit(ma, V) := {x € V, dxma not surjective}
Ot CA = O Ccrit(ma, V)

O C crit(ma,, V)N - Nerit(ma,, V)
(Nerit(ma, V) \ Z = crit((7a,, V)\ Z
—— Dimension, degree and computational

cost understood for a fixed projection.

® Algebraic structure induced by MAYQO's
whipped-up transform?

® Exploit large pre-image of signatures in
EUF-CMA attacks?

Figure 3: Sizes at security level one.

Signature (bytes) | Public key (bytes)
UOV-Ip 128 43 576
MAYO-1 454 1420
MAYO-2 186 4912 \
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Proposed UOV parameters

Level qg,o,v,t epk gain vs UOV
I 251, 48, 55, 6 36%
[l 1021, 70, 79, 7 44%
\% 4093, 96, 107, 8 27%




Genericity in the Zariski topology

Zariski-closed sets are algebraic varieties.
A property is if it holds on a
non-empty Zariski-open set.



Genericity in the Zariski topology

Example: generic smoothness

Zariski-closed sets are algebraic varieties. The curve of equation Y2 — X3 +3X -2 =0is
A property is Zariski-generic if it holds on a singular. Are all curves of equation
non-empty Zariski-open set. E.p:Y?—X3—aX —b=0singular?



Genericity in the Zariski topology

Example: generic smoothness

Zariski-closed sets are algebraic varieties. The curve of equation Y2 — X3 +3X -2 =0is
A property is if it holds on a . Are all curves of equation
non-empty Zariski-open set. E.p:Y?—X3—aX — b=0singular?

Methodology

Consider a, b as and study the equation Jacg(a, b) = (0, 0).



Genericity in the Zariski topology

Example: generic smoothness

Zariski-closed sets are algebraic varieties. The curve of equation Y2 — X3 +3X -2 =0is
A property is if it holds on a . Are all curves of equation
non-empty Zariski-open set. E.p:Y?—X3—aX — b=0singular?
Methodology
Consider a, b as and study the equation Jacg(a, b) = (0,0).

Jacg(a, b) = (0,0) <= d(a, b) = 4a° +27b%> = 0.



Genericity in the Zariski topology

Example: generic smoothness
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How many equations characterize the secret?

Let 6(n,s,r)=(r+1)(n—r)— S(rgz)

The Debarre and Manivel Bound!

Let X be a complete intersection of m quadrics of rank n.

® If 5(n,s, r) <0, then X contains no (proj.) r-dimensional subspaces

® Otherwise, d(n, s, r) is the dimension of the variety of linear spaces included in X.

Application to UOV

If a = g is a , then a UOV secret is characterized by a number of
polynomials from the public key.
For practical parameters, 3 or 4 polynomials are enough.

1The original statement is for arbitrary degrees.
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