

Geometric approach to the cryptanalysis of post-quantum multivariate signature schemes

Pierre Pébereau

Sorbonne Université, LIP6, CNRS, Thales SIX

December 16th, 2025

Historical ciphers

- Polybus (150 B.C.)
- Caesar (50 B.C.)
- Vigenère (1586)

pen-and-paper ciphers

Ancient problem, modern solutions

Historical ciphers

- Polybus (150 B.C.)
- Caesar (50 B.C.)
- Vigenère (1586)

Symmetric cryptography

- One-time-pad (1917)
- Enigma (WWII)
- DES/AES (1977/2000)

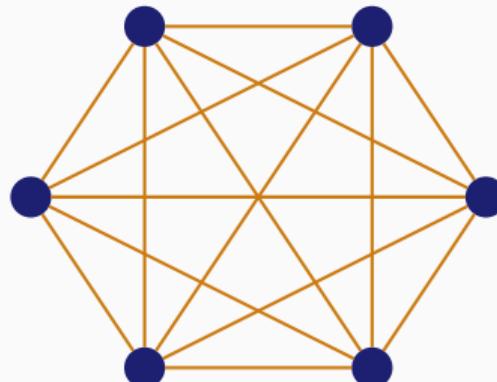
pen-and-paper ciphers

electromechanical/block ciphers

Secret key: one key per **link**:

6 participants: 15 keys.

100 participants: 4950 keys.



Ancient problem, modern solutions

Historical ciphers

- Polybus (150 B.C.)
- Caesar (50 B.C.)
- Vigenère (1586)

Symmetric cryptography

- One-time-pad (1917)
- Enigma (WWII)
- DES/AES (1977/2000)

Public key cryptography

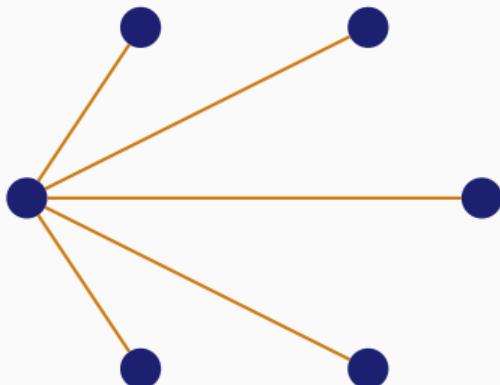
- Diffie, Hellman (1973)
- Rivest, Shamir, Adleman (1977)
- EdDSA (2011)

pen-and-paper ciphers

electromechanical/block ciphers

→ secure internet, credit cards ...

Secret key: one key per **link**:
6 participants: 15 keys.
100 participants: 4950 keys.



Public key: one key per **node**:
6 participants: 6 keys.
100 participants: 100 keys.

Ancient problem, modern solutions

Historical ciphers

- Polybus (150 B.C.)
- Caesar (50 B.C.)
- Vigenère (1586)

Symmetric cryptography

- One-time-pad (1917)
- Enigma (WWII)
- DES/AES (1977/2000)

Public key cryptography

- Diffie, Hellman (1973)
- Rivest, Shamir, Adleman (1977)
- EdDSA (2011)

pen-and-paper ciphers

electromechanical/block ciphers

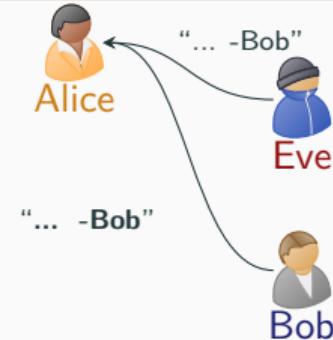
→ secure internet, credit cards ...

Modern cybersecurity goals

- **Confidentiality:** the information is only available to the intended recipient.
- **Integrity:** the information has not been modified after being sent.
- **Authenticity:** the information was sent by a specific, authenticated sender.

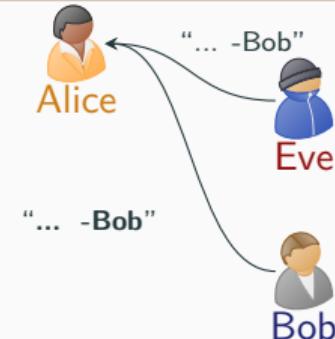
Problem

- How to **authenticate** oneself over an **untrusted** network?
- How to verify **integrity** over an **untrusted** network?



Problem

- How to **authenticate** oneself over an **untrusted** network?
- How to verify **integrity** over an **untrusted** network?



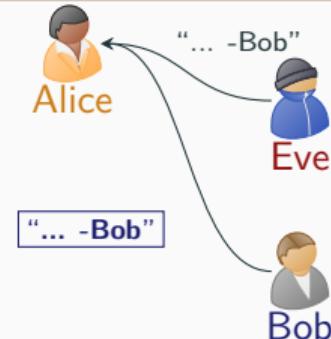
Solution: Public key cryptography

[Diffie, Hellman 1973]

- **Bob** generates a **key pair**: a **private key**, and a **public key** **available to all**

Problem

- How to **authenticate** oneself over an **untrusted** network?
- How to verify **integrity** over an **untrusted** network?



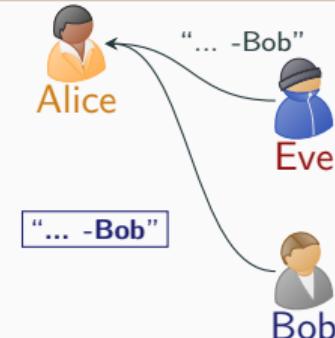
Solution: Public key cryptography

[Diffie, Hellman 1973]

- **Bob** generates a **key pair**: a **private key**, and a **public key** **available to all**
- **Bob** **signs** his message with his **private key**

Problem

- How to **authenticate** oneself over an **untrusted** network?
- How to verify **integrity** over an **untrusted** network?



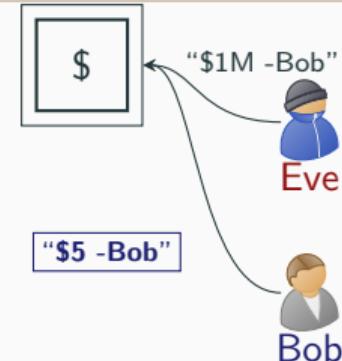
Solution: Public key cryptography

[Diffie, Hellman 1973]

- **Bob** generates a **key pair**: a **private key**, and a **public key** **available to all**
- **Bob** **signs** his message with his **private key**
- **public key** enables **Alice** to **verify Bob's signature** of the message

Problem

- How to **authenticate** oneself over an **untrusted** network?
- How to verify **integrity** over an **untrusted** network?



Solution: Public key cryptography

[Diffie, Hellman 1973]

- **Bob** generates a **key pair**: a **private key**, and a **public key** **available to all**
- **Bob** **signs** his message with his **private key**
- **public key** enables **Alice** to **verify Bob's signature** of the message

Can **Eve** pretend to be **Bob**?

New revolution: Post Quantum Cryptography

Signatures in protocols

- TLS: create a **secure** channel over an untrusted network. in your browser
- DNSSEC, SSH, ...

New revolution: Post Quantum Cryptography

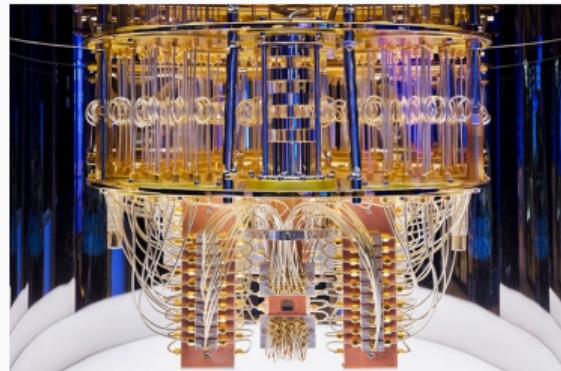
Signatures in protocols

- TLS: create a **secure** channel over an untrusted network. in your browser
- DNSSEC, SSH, ...

Quantum threat

If **Eve** has a large quantum computer, she can compute **private keys** in these protocols [Shor 94].

Can we obtain **Post-Quantum TLS**?



Source: IBM Research.

New revolution: Post Quantum Cryptography

Signatures in protocols

- TLS: create a **secure** channel over an untrusted network. in your browser
- DNSSEC, SSH, ...

Good news: many **quantum-hard** problems

- Finding short vectors in Euclidean lattices

Quantum threat

If **Eve** has a large quantum computer, she can compute **private keys** in these protocols [Shor 94].

Can we obtain **Post-Quantum TLS**?

New revolution: Post Quantum Cryptography

Signatures in protocols

- TLS: create a **secure** channel over an untrusted network. in your browser
- DNSSEC, SSH, ...

Good news: many **quantum-hard** problems

- Finding short vectors in Euclidean lattices
- Decoding error-correcting codes
- Computing isogenies
- Solving systems of polynomial equations
- ...

Quantum threat

If **Eve** has a large quantum computer, she can compute **private keys** in these protocols [Shor 94].

Can we obtain **Post-Quantum TLS**?

New revolution: Post Quantum Cryptography

Signatures in protocols

- TLS: create a **secure** channel over an untrusted network. in your browser
- DNSSEC, SSH, ...

Quantum threat

If **Eve** has a large quantum computer, she can compute **private keys** in these protocols [Shor 94].

Can we obtain **Post-Quantum TLS**?

Good news: many **quantum-hard** problems

- Finding short vectors in Euclidean lattices
- Decoding error-correcting codes
- Computing isogenies
- Solving systems of polynomial equations
- ...

Bad news: security is expensive

Severe impact on performance and **size** of cryptographic data causes **fragmentation**

New revolution: Post Quantum Cryptography

Signatures in protocols

- TLS: create a **secure** channel over an untrusted network. in your browser
- DNSSEC, SSH, ...

Quantum threat

If **Eve** has a large quantum computer, she can compute **private keys** in these protocols [Shor 94].

Can we obtain **Post-Quantum TLS**?

Good news: many **quantum-hard** problems

- Finding short vectors in Euclidean lattices
- Decoding error-correcting codes
- Computing isogenies
- Solving systems of polynomial equations
- ...

Bad news: security is expensive

Severe impact on performance and **size** of cryptographic data causes **fragmentation**

	Signature	Public key
EdDSA	64 bytes	32 bytes
ML-DSA	2 420 bytes	1 312 bytes

New revolution: Post Quantum Cryptography

Signatures in protocols

- TLS: create a **secure** channel over an untrusted network. in your browser
- DNSSEC, SSH, ...

Quantum threat

If **Eve** has a large quantum computer, she can compute **private keys** in these protocols [Shor 94].

Can we obtain **Post-Quantum TLS**?

Good news: many **quantum-hard** problems

- Finding short vectors in Euclidean lattices
- Decoding error-correcting codes
- Computing isogenies
- **Solving systems of polynomial equations**
- ...

Bad news: security is expensive

Severe impact on performance and **size** of cryptographic data causes **fragmentation**

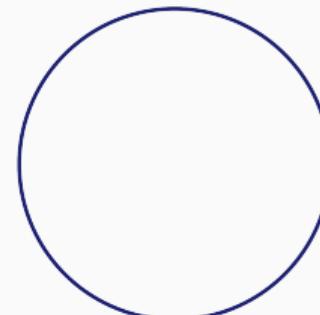
	Signature	Public key
EdDSA	64 bytes	32 bytes
ML-DSA	2 420 bytes	1 312 bytes

Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$X^2 + Y^2 - 1 = 0$$



Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$2X + 3Y^3 - 1 = 0$$

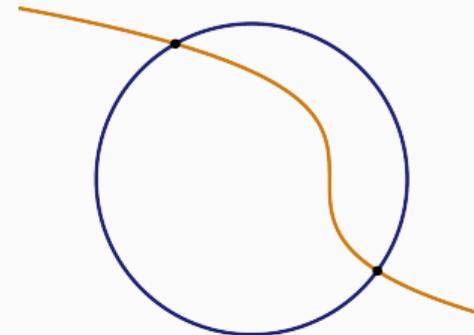
Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$X^2 + Y^2 - 1 = 0$$

$$2X + 3Y^3 - 1 = 0$$



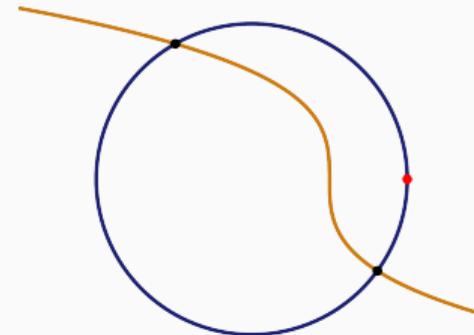
Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$X^2 + Y^2 - 1 = 0$$

$$2X + 3Y^3 - 1 = 0$$



Polynomial system solving is NP

- Testing a solution is **easy**: “Is $(1, 0)$ a solution?”

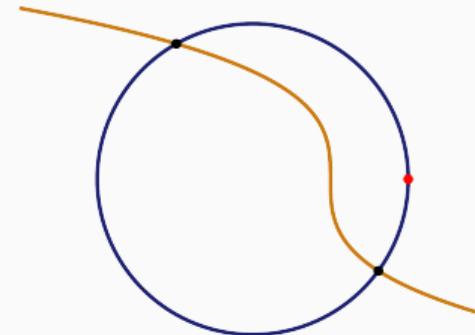
Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$1 \times 1 + 0 \times 0 - 1 = 0$$

$$2X + 3Y^3 - 1 = 0$$



Polynomial system solving is NP

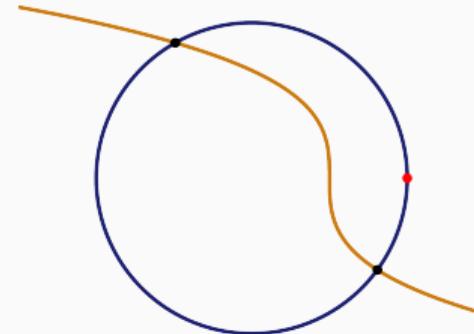
- Testing a solution is **easy**: “Is $(1, 0)$ a solution?”

Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$0 = 0 \text{ YES}$$
$$2X + 3Y^3 - 1 = 0$$



Polynomial system solving is NP

- Testing a solution is **easy**: “Is $(1, 0)$ a solution?”

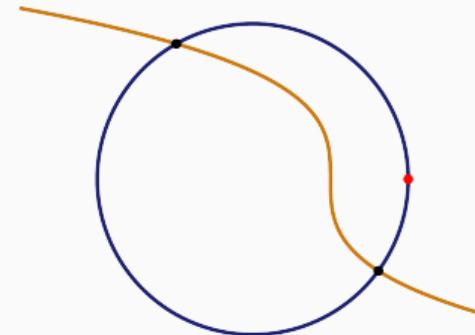
Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$0 = 0 \text{ YES}$$

$$2 \times 1 + 3 \times 0 - 1 = 0$$



Polynomial system solving is NP

- Testing a solution is **easy**: “Is $(1, 0)$ a solution?”

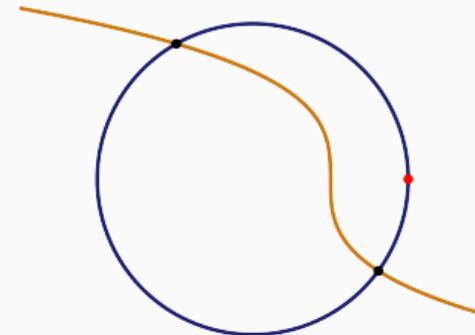
Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$0 = 0$ YES

$1 = 0$ NO



Polynomial system solving is NP

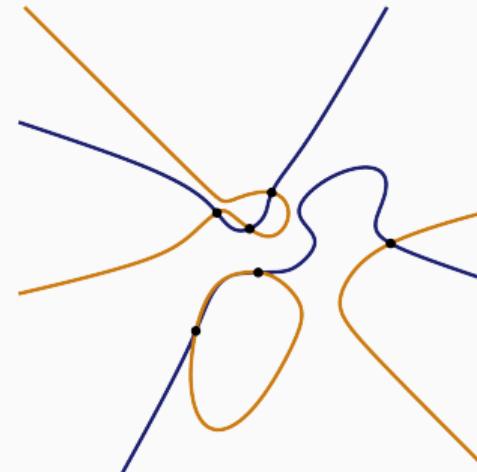
- Testing a solution is **easy**: “Is $(1, 0)$ a solution?” \longrightarrow **NO**.

Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$\begin{aligned} & x^6 + 2x^5y - 3x^4y^2 + x^3y^3 + 4x^2y^4 + 3xy^5 - 3y^6 - 4x^5 - 2x^4y - \\ & x^3y^2 - x^2y^3 + 4xy^4 - 2y^5 + 4x^4 - 4x^3y - 3x^2y^2 + y^4 - 3x^3 + \\ & 2x^2y + 2xy^2 + 4y^3 + 2x^2 + 4xy - 4y^2 + x - 3y + 1 = 0 \\ & -x^6 + 4x^5y + 3x^4y^2 + 3x^3y^3 + 3x^2y^4 - xy^5 + y^6 + 2x^5 - 3x^4y + \\ & x^2y^3 + xy^4 + 3y^5 + 3x^4 + 3x^3y - 2x^2y^2 - xy^3 - y^4 + x^3 - 2x^2y + \\ & 2xy^2 + 4y^3 + 3x^2 - 2xy - 4y^2 - 3x - 4y + 1 = 0 \end{aligned}$$



Polynomial system solving is NP

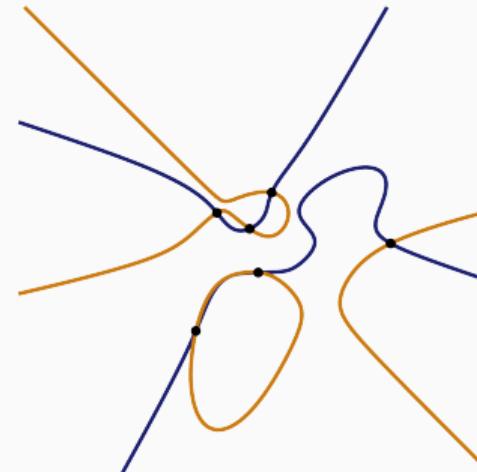
- Testing a solution is **easy**: “Is $(1, 0)$ a solution?”

Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$\begin{aligned} & x^6 + 2x^5y - 3x^4y^2 + x^3y^3 + 4x^2y^4 + 3xy^5 - 3y^6 - 4x^5 - 2x^4y - \\ & x^3y^2 - x^2y^3 + 4xy^4 - 2y^5 + 4x^4 - 4x^3y - 3x^2y^2 + y^4 - 3x^3 + \\ & 2x^2y + 2xy^2 + 4y^3 + 2x^2 + 4xy - 4y^2 + x - 3y + 1 = 0 \\ & -x^6 + 4x^5y + 3x^4y^2 + 3x^3y^3 + 3x^2y^4 - xy^5 + y^6 + 2x^5 - 3x^4y + \\ & x^2y^3 + xy^4 + 3y^5 + 3x^4 + 3x^3y - 2x^2y^2 - xy^3 - y^4 + x^3 - 2x^2y + \\ & 2xy^2 + 4y^3 + 3x^2 - 2xy - 4y^2 - 3x - 4y + 1 = 0 \end{aligned}$$



Polynomial system solving is NP-hard

- Testing a solution is **easy**: “Is $(1, 0)$ a solution?”
- Finding a solution is **hard** in **degree at least two**.

see [Garey, Johnson 1979]

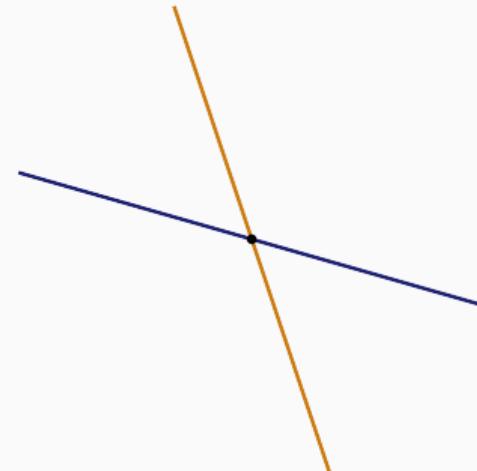
Systems of multivariate polynomial equations

Algebraic geometry

The set of solutions of an **algebraic** equation is a **geometric** object called a **variety**.

$$2X + 7Y = 0$$

$$3X + 1Y = 0$$



Polynomial system solving is NP-hard

- Testing a solution is **easy**: “Is $(1, 0)$ a solution?”
- Finding a solution is **hard** in degree at least two.

see [Garey, Johnson 1979]

Solving linear systems of equations is easy

Polynomial time algorithms for many linear algebra problems.

Multivariate signature schemes: a template

- **Public key:** a system of polynomial equations of degree two → Hard to solve
- **Signature:** a solution of the public system of polynomial equations
- **Verification:** testing that a solution is correct → Easy to verify

Multivariate signature schemes: a template

- **Public key:** a system of polynomial equations of degree two → **Hard to solve**
- **Signature:** a solution of the public system of polynomial equations
- **Verification:** testing that a solution is correct → **Easy to verify**

Oil and Vinegar

Private key: reduce to the **linear** case [Patarin '97]

Multivariate signature schemes: a template

- **Public key:** a system of polynomial equations of degree two → Hard to solve
- **Signature:** a solution of the public system of polynomial equations
- **Verification:** testing that a solution is correct → Easy to verify

Oil and Vinegar

Private key: reduce to the linear case [Patarin '97]

Example: oil is Y, Z ; vinegar is X .

$$Z - XY = 0.$$

Multivariate signature schemes: a template

- **Public key:** a system of polynomial equations of degree two
- **Signature:** a solution of the public system of polynomial equations
- **Verification:** testing that a solution is correct

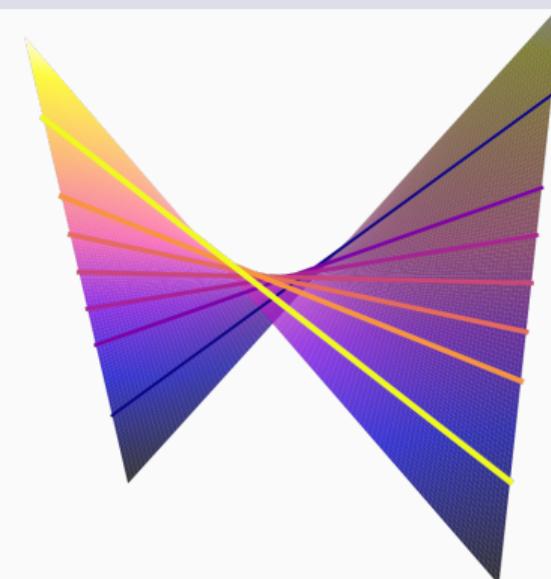
→ Hard to solve

→ Easy to verify

Oil and Vinegar

Private key: reduce to the **linear** case [Patarin '97]Example: oil is **Y,Z**; vinegar is **X**.

$$Z - XY = 0.$$

Set **X** = 1, then the polynomial is linear

Multivariate signature schemes: a template

- **Public key:** a system of polynomial equations of degree two → Hard to solve
- **Signature:** a solution of the public system of polynomial equations
- **Verification:** testing that a solution is correct → Easy to verify

Oil and Vinegar

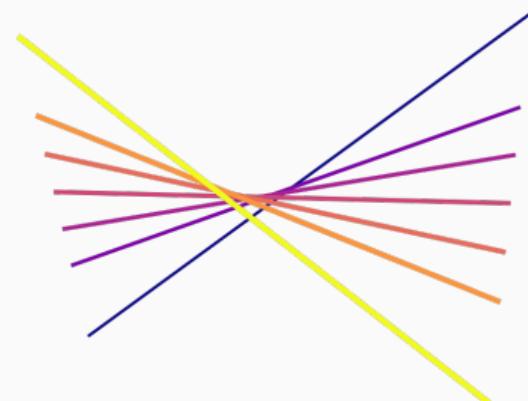
Private key: reduce to the linear case [Patarin '97]

Example: oil is Y, Z ; vinegar is X .

$$Z - XY = 0.$$

Set $X = 1$, then the polynomial is linear

$$(1, 0, 0) + \mathbb{R}(0, 1, 1).$$



Multivariate signature schemes: a template

- **Public key:** a system of polynomial equations of degree two → Hard to solve
- **Signature:** a solution of the public system of polynomial equations
- **Verification:** testing that a solution is correct → Easy to verify

Original (U)OV formulation

Private key: polynomials $\mathbf{f}_1, \dots, \mathbf{f}_m \in \mathbb{F}_q[X_1, \dots, X_n]$ linear in $\mathbf{X}_1, \dots, \mathbf{X}_o$, $\mathbf{A} \in GL_n(\mathbb{F}_q)$.

Public key: polynomials $\mathbf{p}_1, \dots, \mathbf{p}_m \in \mathbb{F}_q[X_1, \dots, X_n]$, with $\mathbf{p}_i = \mathbf{X}^T \cdot \mathbf{P}_i \cdot \mathbf{X} = \mathbf{f}_i \circ \mathbf{A}$.

Multivariate signature schemes: a template

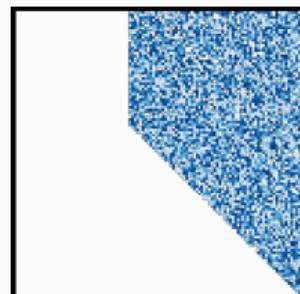
- **Public key:** a system of polynomial equations of degree two → Hard to solve
- **Signature:** a solution of the public system of polynomial equations
- **Verification:** testing that a solution is correct → Easy to verify

Original (U)OV formulation

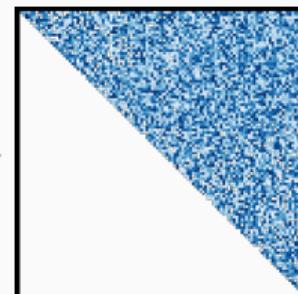
Private key: polynomials $f_1, \dots, f_m \in \mathbb{F}_q[X_1, \dots, X_n]$ linear in X_1, \dots, X_o , $A \in GL_n(\mathbb{F}_q)$.

Public key: polynomials $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, with $p_i = X^T \cdot P_i \cdot X = f_i \circ A$.

Private polynomial
 $F_1 \in (\mathbb{F}_{257})^{n \times n}$



$A \in GL_n(\mathbb{F}_{257})$



Public polynomial
 $P_1 \in (\mathbb{F}_{257})^{n \times n}$

Problem

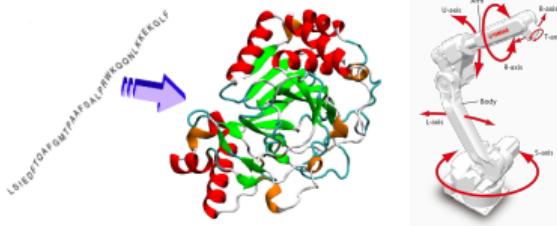
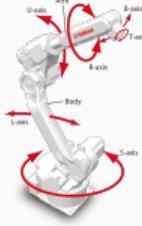
Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

Applications: *biology, optimization, physics, robotics, ...*

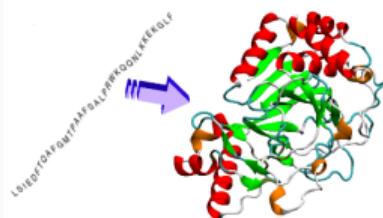


Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

Applications: *biology, optimization, physics, robotics, ...*



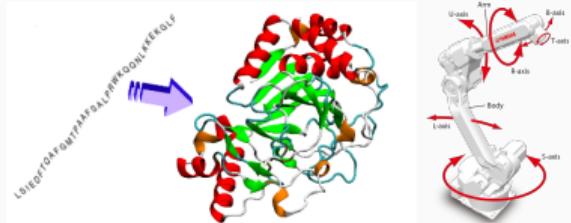
Mathematical history: [\[Descartes 1637\]](#), [\[Hilbert 1890\]](#), [\[Macaulay 1916\]](#), ...

Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

Applications: *biology, optimization, physics, robotics, ...*



Mathematical history: [Descartes 1637], [Hilbert 1890],

[Macaulay 1916], ...

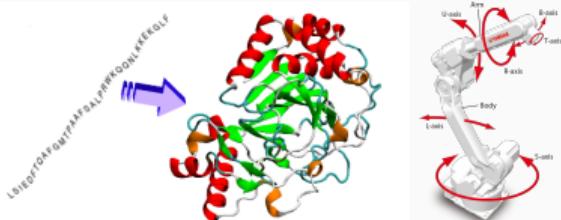
Gröbner basis algorithms & complexity: [Buchberger '65], [Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02], [Bardet, Faugère, Salvy 04, 05, 15].

Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

Applications: *biology, optimization, physics, robotics, ...*



Mathematical history: [Descartes 1637], [Hilbert 1890],

[Macaulay 1916], ...

Gröbner basis algorithms & complexity: [Buchberger '65],
[Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02],
[Bardet, Faugère, Salvy 04, 05, 15].

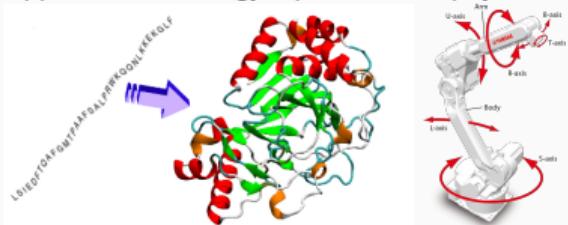
Quantum algorithms: [Grover '96], [Faugère, Horan,
Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

Applications: *biology, optimization, physics, robotics, ...*



Mathematical history: [Descartes 1637], [Hilbert 1890],
[Macaulay 1916], ...

Gröbner basis algorithms & complexity: [Buchberger '65],
[Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02],
[Bardet, Faugère, Salvy 04, 05, 15].

Quantum algorithms: [Grover '96], [Faugère, Horan,
Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

Generators

degree d

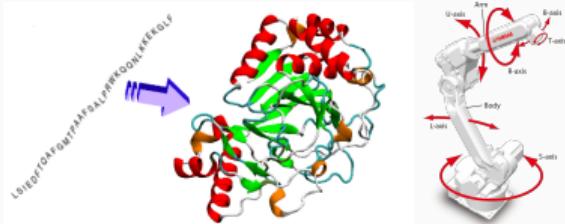
Gröbner basis
algorithm

Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

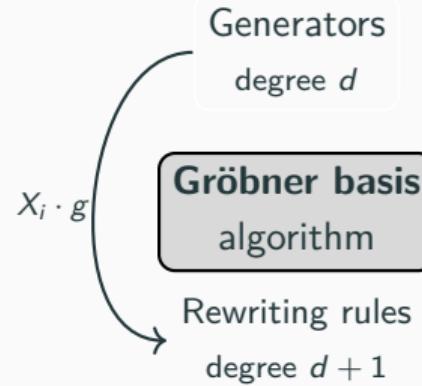
Applications: *biology, optimization, physics, robotics, ...*



Mathematical history: [Descartes 1637], [Hilbert 1890],
[Macaulay 1916], ...

Gröbner basis algorithms & complexity: [Buchberger '65],
[Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02],
[Bardet, Faugère, Salvy 04, 05, 15].

Quantum algorithms: [Grover '96], [Faugère, Horan,
Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

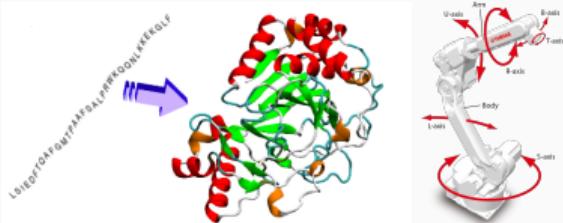


Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

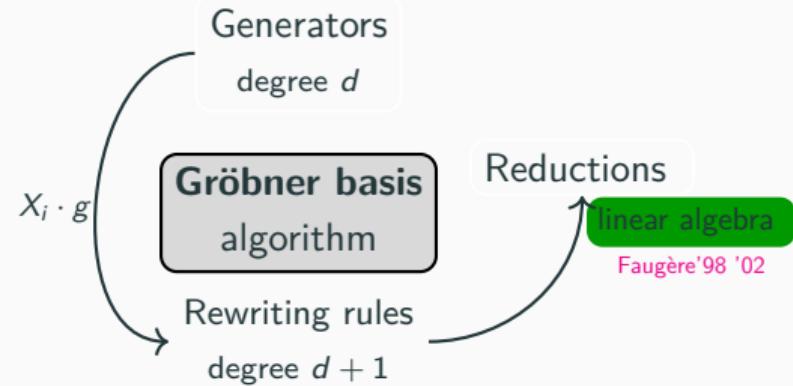
Applications: *biology, optimization, physics, robotics, ...*



Mathematical history: [Descartes 1637], [Hilbert 1890], [Macaulay 1916], ...

Gröbner basis algorithms & complexity: [Buchberger '65], [Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02], [Bardet, Faugère, Salvy 04, 05, 15].

Quantum algorithms: [Grover '96], [Faugère, Horan, Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

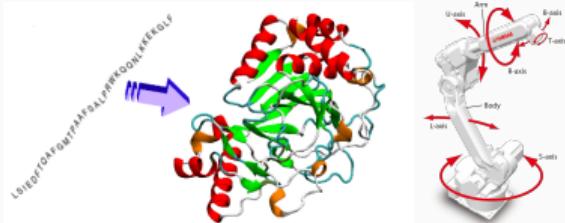


Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

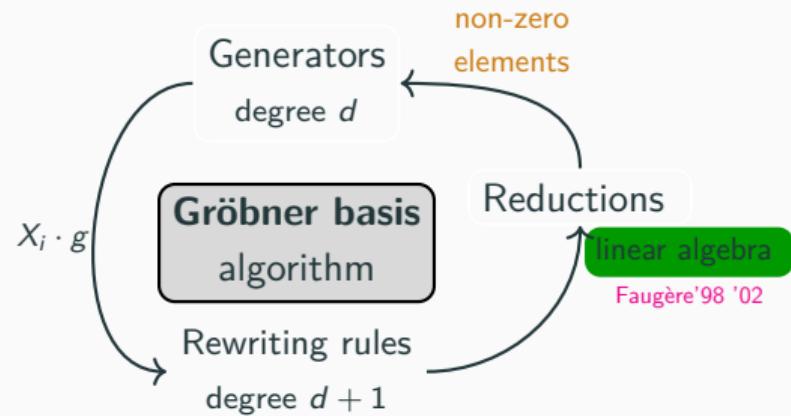
Applications: *biology, optimization, physics, robotics, ...*



Mathematical history: [Descartes 1637], [Hilbert 1890], [Macaulay 1916], ...

Gröbner basis algorithms & complexity: [Buchberger '65], [Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02], [Bardet, Faugère, Salvy 04, 05, 15].

Quantum algorithms: [Grover '96], [Faugère, Horan, Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

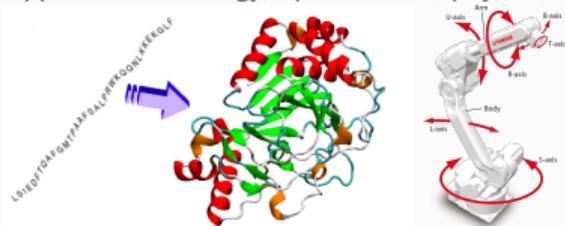


Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

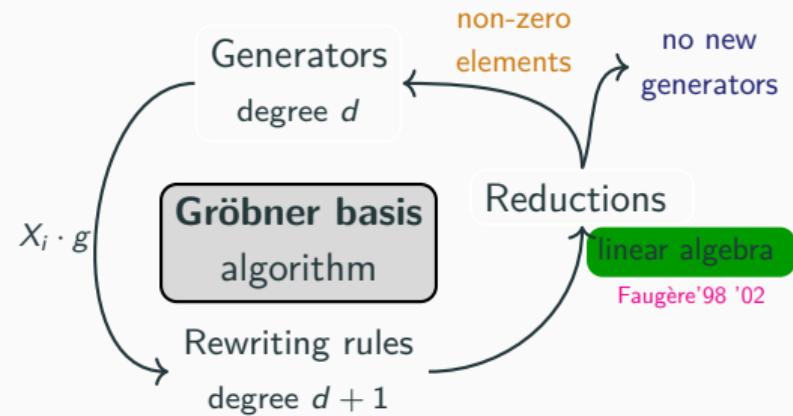
Applications: *biology, optimization, physics, robotics, ...*



Mathematical history: [Descartes 1637], [Hilbert 1890], [Macaulay 1916], ...

Gröbner basis algorithms & complexity: [Buchberger '65], [Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02], [Bardet, Faugère, Salvy 04, 05, 15].

Quantum algorithms: [Grover '96], [Faugère, Horan, Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

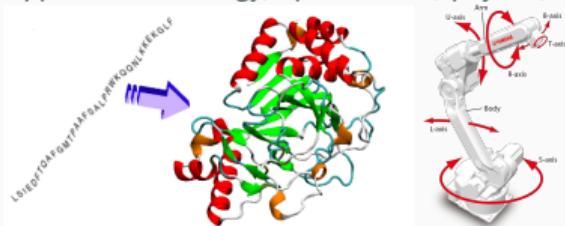


Cryptanalysis of UOV: forgery

Problem

Is it hard to find a solution of a *random* system of quadratic equations over a finite field?

Applications: *biology, optimization, physics, robotics, ...*



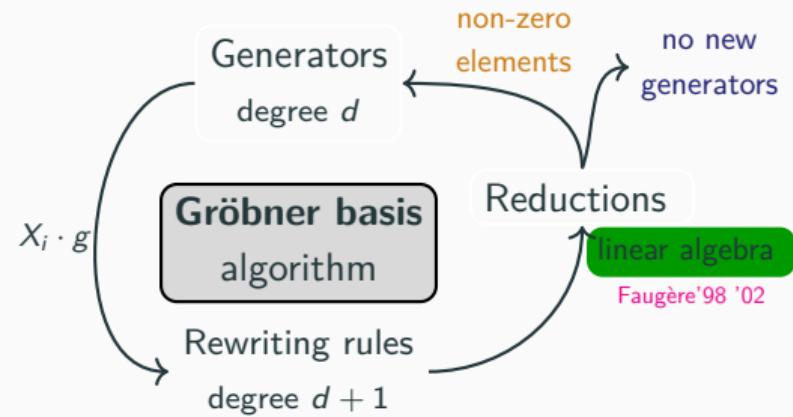
Mathematical history: [Descartes 1637], [Hilbert 1890], [Macaulay 1916], ...

Gröbner basis algorithms & complexity: [Buchberger '65], [Lazard '83], [Giusti '84], [Traverso '89] [Faugère '99, 02], [Bardet, Faugère, Salvy 04, 05, 15].

Quantum algorithms: [Grover '96], [Faugère, Horan, Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

Direct attack

With Gröbner basis algorithms, public systems are **indistinguishable** from random systems.



n, m	UOV	Generic
10, 4	6, 16, 6	6, 16, 6
12, 5	7, 32, 7	7, 32, 7
15, 6	9, 64, 8	9, 64, 8
17, 7	10, 128, 9	10, 128, 8

Dimension, degree and degree of regularity for systems in n variables and m quadratic equations.

Exploiting the geometry of UOV

Original UOV formulation

[Patarin 1997] [Kipnis, Patarin, Goubin 1999]

Private key: polynomials $f_1, \dots, f_m \in \mathbb{F}_q[X_1, \dots, X_n]$ linear in X_1, \dots, X_o .

Public key: $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, $A \in GL_n(\mathbb{F}_q)$, $p_i = f_i \circ A$.

Exploiting the geometry of UOV

Original UOV formulation

[Patarin 1997] [Kipnis, Patarin, Goubin 1999]

Private key: polynomials $f_1, \dots, f_m \in \mathbb{F}_q[X_1, \dots, X_n]$ linear in X_1, \dots, X_o .

Private key: there exists a linear subspace $\mathcal{O} \subset V(\mathcal{I})$, $\dim \mathcal{O} = o$. [Kipnis Shamir 1998]

Public key: $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, $A \in GL_n(\mathbb{F}_q)$, $p_i = f_i \circ A$.

Exploiting the geometry of UOV

Original UOV formulation

[Patarin 1997] [Kipnis, Patarin, Goubin 1999]

Private key: polynomials $f_1, \dots, f_m \in \mathbb{F}_q[X_1, \dots, X_n]$ linear in X_1, \dots, X_o .

Private key: there exists a **linear subspace** $\mathcal{O} \subset V(\mathcal{I})$, $\dim \mathcal{O} = o$. [Kipnis Shamir 1998]

Public key: $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, $A \in GL_n(\mathbb{F}_q)$, $p_i = f_i \circ A$.

Reduction to linear algebra

[Kipnis-Shamir 1998] [Kipnis, Patarin, Goubin 1999]

- $n = 2o$: \mathcal{O} is an *invariant subspace* of some public matrix.
Polynomial-time attack, by computing $O(1)$ characteristic polynomials.

Exploiting the geometry of UOV

Original UOV formulation

[Patarin 1997] [Kipnis, Patarin, Goubin 1999]

Private key: polynomials $f_1, \dots, f_m \in \mathbb{F}_q[X_1, \dots, X_n]$ linear in X_1, \dots, X_o .

Private key: there exists a **linear subspace** $\mathcal{O} \subset V(\mathcal{I})$, $\dim \mathcal{O} = o$. [Kipnis Shamir 1998]

Public key: $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, $A \in GL_n(\mathbb{F}_q)$, $p_i = f_i \circ A$.

Reduction to linear algebra

[Kipnis-Shamir 1998] [Kipnis, Patarin, Goubin 1999]

- $n = 2o$: \mathcal{O} is an *invariant subspace* of some public matrix.
Polynomial-time attack, by computing $O(1)$ characteristic polynomials.
- $n > 2o$: \mathcal{O} contains *eigenvectors* of some public matrices with probability $\approx q^{2o-n}$.
Exponential-time attack, by computing $O(q^{n-2o})$ characteristic polynomials.

Notations

Public key: polynomials $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$ **radical**, $\text{codim}\mathcal{I} = m$.

Private key: a linear subspace $\mathcal{O} \subset V := V(\mathcal{I})$, where V is an **equidimensional variety**.

Notations

Public key: polynomials $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$ **radical**, $\text{codim}\mathcal{I} = m$.

Private key: a linear subspace $\mathcal{O} \subset V := V(\mathcal{I})$, where V is an **equidimensional variety**.

Can we distinguish points of $V \setminus \mathcal{O}$ from points of \mathcal{O} ?

[P. PQC 2024]

Notations

Public key: polynomials $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$ **radical**, $\text{codim}\mathcal{I} = m$.

Private key: a linear subspace $\mathcal{O} \subset V := V(\mathcal{I})$, where V is an **equidimensional variety**.

Can we distinguish points of $V \setminus \mathcal{O}$ from points of \mathcal{O} ?

[P. PQC 2024]

- YES, there exists a **polynomial-time** algorithm deciding $x \in \mathcal{O}$.

Notations

Public key: polynomials $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$ **radical**, $\text{codim}\mathcal{I} = m$.

Private key: a linear subspace $\mathcal{O} \subset V := V(\mathcal{I})$, where V is an **equidimensional variety**.

Can we distinguish points of $V \setminus \mathcal{O}$ from points of \mathcal{O} ?

[P. PQC 2024]

- YES, there exists a **polynomial-time** algorithm deciding $x \in \mathcal{O}$.
- As a byproduct, recover the *full* private key from one vector.

Notations

Public key: polynomials $p_1, \dots, p_m \in \mathbb{F}_q[X_1, \dots, X_n]$, $\mathcal{I} = \langle p_1, \dots, p_m \rangle$ **radical**, $\text{codim}\mathcal{I} = m$.

Private key: a linear subspace $\mathcal{O} \subset V := V(\mathcal{I})$, where V is an **equidimensional variety**.

Can we distinguish points of $V \setminus \mathcal{O}$ from points of \mathcal{O} ?

[P. PQC 2024]

- YES, there exists a **polynomial-time** algorithm deciding $x \in \mathcal{O}$.
- As a byproduct, recover the *full* private key from one vector.

Previous result: Reconciliation

[Ding, Yang, Chen, Chen, Cheng 2008]

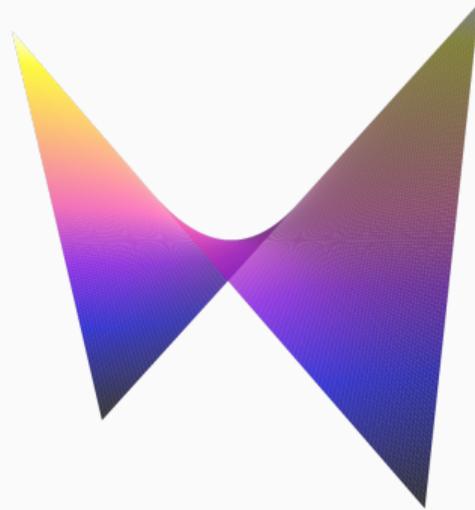
Given **one vector** $x \in \mathcal{O}$ and \mathcal{P} , compute a basis of \mathcal{O} in time **exponential** in n, m .

Tangent spaces of the UOV variety

Input: a point $x \in V$.

Geometric observation

A linear subspace is tangent to itself.



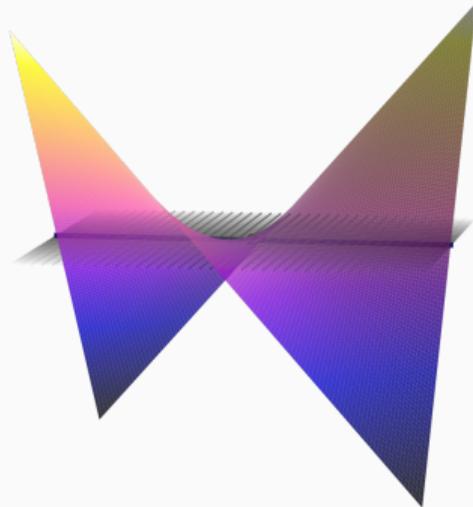
Tangent spaces of the UOV variety

Input: a point $x \in V$.

Geometric observation

A linear subspace is tangent to itself.

$$\forall x \in \mathcal{O}, \quad \mathcal{O} \subset T_x V$$



Tangent spaces of the UOV variety

Input: a point $x \in V$.

Geometric observation

A linear subspace is tangent to itself.

$$\forall x \in \mathcal{O}, \quad \mathcal{O} \subset T_x V$$

Tangent spaces of the UOV variety

Input: a point $x \in V$.

Geometric observation

A linear subspace is tangent to itself.

$$\forall x \in \mathcal{O}, \quad \mathcal{O} \subset T_x V$$

Tangent spaces of the UOV variety

Input: a point $x \in V$.

Geometric observation

A linear subspace is tangent to itself.

$$\forall x \in \mathcal{O}, \quad \mathcal{O} \subset T_x V$$

Tangent space at a regular point

The **tangent space** of V at $x \in V$ is

$$T_x V := \ker(\text{Jac}_{\mathcal{P}}(x))$$

$$\text{Jac}_{\mathcal{P}}(x) = \begin{pmatrix} \frac{\partial p_1}{\partial X_1} & \dots & \frac{\partial p_1}{\partial X_n} \\ \vdots & & \vdots \\ \frac{\partial p_m}{\partial X_1} & \dots & \frac{\partial p_m}{\partial X_n} \end{pmatrix}$$

Tangent spaces of the UOV variety

Input: a point $x \in V$.

Geometric observation

A linear subspace is tangent to itself.

$$\forall x \in \mathcal{O}, \quad \mathcal{O} \subset T_x V$$

Tangent space at a regular point

The **tangent space** of V at $x \in V$ is

$$T_x V := \ker(\text{Jac}_{\mathcal{P}}(x))$$

$$\text{Jac}_{\mathcal{P}}(x) = \begin{pmatrix} \frac{\partial p_1}{\partial X_1} & \dots & \frac{\partial p_1}{\partial X_n} \\ \vdots & & \vdots \\ \frac{\partial p_m}{\partial X_1} & \dots & \frac{\partial p_m}{\partial X_n} \end{pmatrix}$$

Algorithm

Compute the **restriction** of \mathcal{P} to $T_x V$. Matrices have **low rank** if and only if $x \in \mathcal{O}$.

Consequence: One vector to rule them all

Contribution: more than we bargained for

[P. PQC 2024]

Given **one vector** $x \in \mathcal{O}$ and $\mathcal{P} = (p_1, \dots, p_m)$, compute a basis of \mathcal{O} in polynomial-time $O(mn^\omega)$, where $2 \leq \omega \leq 3$ is the exponent of matrix multiplication.

Consequence: One vector to rule them all

Contribution: more than we bargained for

[P. PQC 2024]

Given **one vector** $x \in \mathcal{O}$ and $\mathcal{P} = (p_1, \dots, p_m)$, compute a basis of \mathcal{O} in polynomial-time $O(mn^\omega)$, where $2 \leq \omega \leq 3$ is the exponent of matrix multiplication.

Security level n, m	I	I	III	V
Time	1.7s	4.4s	5.7s	13.3s
[DCCCY 08] (gates)	2^{55}	2^{65}	2^{75}	2^{92}
This work (gates)	2^{33}	2^{33}	2^{36}	2^{37}

Previous result: Reconciliation

[Ding, Yang, Chen, Chen, Cheng 2008]

Given **one vector** $x \in \mathcal{O}$ and \mathcal{P} , compute a basis of \mathcal{O} in time **exponential** in n, m .

Complexity estimates and practical results with SAGEMATH.

Experimental hardware: Intel i7 running at 2.80GHz with 8GB RAM.

Implementation available under MIT licence.

See also: [Aulbach, Campos, Krämer, Samardjiska, Stöttinger 2023]

Limits of our previous result and locality of the UOV secret

- Not a full attack: require **side-channel** or **cryptanalysis** to obtain a vector $x \in \mathcal{O}$.

Limits of our previous result and locality of the UOV secret

- Not a full attack: require **side-channel** or **cryptanalysis** to obtain a vector $x \in \mathcal{O}$.
- The points of $V(\mathcal{I}) \setminus \mathcal{O}$ give **no information** on \mathcal{O} (or even its existence).

Singular points of UOV and VOX

Limits of our previous result and locality of the UOV secret

- Not a full attack: require **side-channel** or **cryptanalysis** to obtain a vector $x \in \mathcal{O}$.
- The points of $V(\mathcal{I}) \setminus \mathcal{O}$ give **no information** on \mathcal{O} (or even its existence).

Questions

- Can we leverage tangent space structure in a key recovery attack?
- Consequences for UOV variants submitted to NIST?

Singular points of UOV and VOX

Limits of our previous result and locality of the UOV secret

- Not a full attack: require **side-channel** or **cryptanalysis** to obtain a vector $x \in \mathcal{O}$.
- The points of $V(\mathcal{I}) \setminus \mathcal{O}$ give **no information** on \mathcal{O} (or even its existence).

Questions

- Can we leverage tangent space structure in a key recovery attack?
- Consequences for UOV variants submitted to NIST?

Results

[P. Eurocrypt 2025]

- YES, one obtains an **algebraic** variant of the **Kipnis-Shamir attack** [KPG '99].

Singular points of UOV and VOX

Limits of our previous result and locality of the UOV secret

- Not a full attack: require **side-channel** or **cryptanalysis** to obtain a vector $x \in \mathcal{O}$.
- The points of $V(\mathcal{I}) \setminus \mathcal{O}$ give **no information** on \mathcal{O} (or even its existence).

Questions

- Can we leverage tangent space structure in a key recovery attack?
- Consequences for UOV variants submitted to NIST?

Results

[P. Eurocrypt 2025]

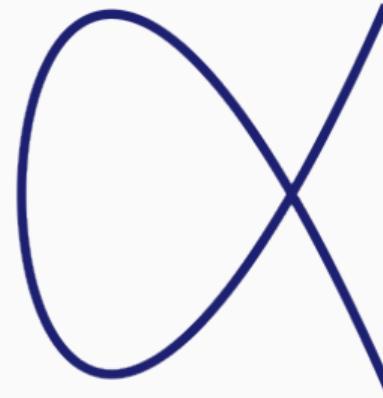
- YES, one obtains an **algebraic** variant of the **Kipnis-Shamir attack** [KPG '99].
- Attack does not break UOV, but applies successfully to UOV $\hat{+}$ /VOX.

Singular points and dimension of the tangent space

Tangent space and Jacobian matrix

Assume V equidimensional and \mathcal{I} radical.

The tangent space to V at x is the **kernel** of the Jacobian matrix evaluated at x .



$$E : Y^2 - X^3 + 3X - 2 = 0.$$

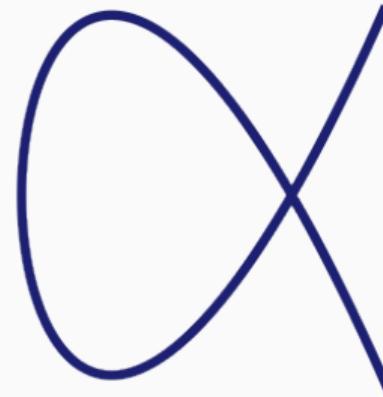
Singular points and dimension of the tangent space

Tangent space and Jacobian matrix

Assume V equidimensional and \mathcal{I} radical.

The tangent space to V at x is the **kernel** of the Jacobian matrix evaluated at x .

$$\text{Jac}_E(X, Y) = \left(\frac{\partial E}{\partial X}, \frac{\partial E}{\partial Y} \right) = (-3X^2 + 3, 2Y).$$



$$E : Y^2 - X^3 + 3X - 2 = 0.$$

Singular points and dimension of the tangent space

Tangent space and Jacobian matrix

Assume V equidimensional and \mathcal{I} radical.

The tangent space to V at x is the **kernel** of the Jacobian matrix evaluated at x .

$$\text{Jac}_E(X, Y) = \left(\frac{\partial E}{\partial X}, \frac{\partial E}{\partial Y} \right) = (-3X^2 + 3, 2Y).$$



$$E : Y^2 - X^3 + 3X - 2 = 0.$$

Singular points and dimension of the tangent space

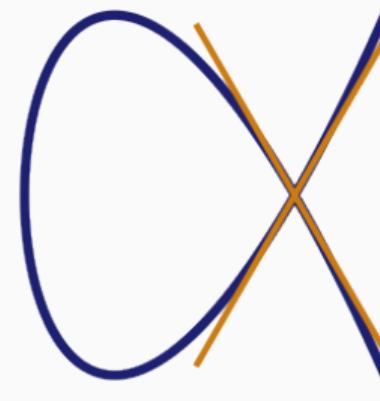
Tangent space and Jacobian matrix

Assume V equidimensional and \mathcal{I} radical.

The tangent space to V at x is the **kernel** of the Jacobian matrix evaluated at x .

$$\text{Jac}_E(X, Y) = \left(\frac{\partial E}{\partial X}, \frac{\partial E}{\partial Y} \right) = (-3X^2 + 3, 2Y).$$

$$\text{Jac}_E(1, 0) = (0, 0).$$



$$E : Y^2 - X^3 + 3X - 2 = 0.$$

Singular points and dimension of the tangent space

Tangent space and Jacobian matrix

Assume V equidimensional and \mathcal{I} radical.

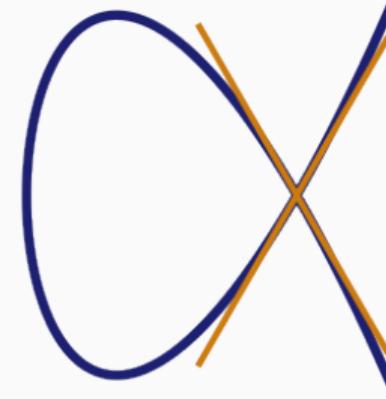
The tangent space to V at x is the **kernel** of the Jacobian matrix evaluated at x .

$$\text{Jac}_E(X, Y) = \left(\frac{\partial E}{\partial X}, \frac{\partial E}{\partial Y} \right) = (-3X^2 + 3, 2Y).$$

$$\text{Jac}_E(1, 0) = (0, 0).$$

Singular points and tangent spaces

$x \in V$ is **singular** if the Jacobian matrix evaluated at x has a **rank defect**.



$$E : Y^2 - X^3 + 3X - 2 = 0.$$

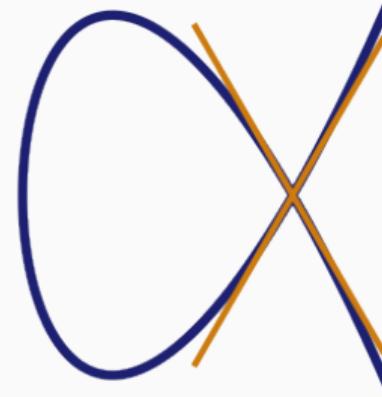
Singular points and dimension of the tangent space

Tangent space and Jacobian matrix

Assume V equidimensional and \mathcal{I} radical.

The tangent space to V at x is the **kernel** of the Jacobian matrix evaluated at x .

$$\begin{aligned}\text{Jac}_E(X, Y) &= \left(\frac{\partial E}{\partial X}, \frac{\partial E}{\partial Y} \right) = (-3X^2 + 3, 2Y). \\ \text{Jac}_E(1, 0) &= (0, 0).\end{aligned}$$



Singular points and tangent spaces

$x \in V$ is **singular** if the Jacobian matrix evaluated at x has a **rank defect**.

$$E : Y^2 - X^3 + 3X - 2 = 0.$$

Previous work on geometric attacks

[KS'98] computes **singular points** of the intersection of two quadrics

[KPG'99] computes **singular points** of $V(\mathcal{I})$

[Luyten 23]

Beullens, Castryck 23

Structured equations yield a structured Jacobian

Algebraic private key

[Kipnis, Patarin, Goubin 1999]

Private key \mathcal{F} : m polynomials linear in X_1, \dots, X_o , a linear map A : $1 \leq i \leq m$, $p_i = f_i \circ A$.

Structured equations yield a structured Jacobian

Algebraic private key

[Kipnis, Patarin, Goubin 1999]

Private key \mathcal{F} : m polynomials linear in $\mathbf{X}_1, \dots, \mathbf{X}_o$, a linear map A : $1 \leq i \leq m$, $p_i = f_i \circ A$.

Secret Jacobian

[P. Eurocrypt 2025]

The Jacobian of \mathcal{F} has a special shape :

$$\text{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} \partial \mathbf{X}_1 & \cdots & \partial \mathbf{X}_o & \partial \mathbf{X}_{o+1} & \cdots & \partial \mathbf{X}_n \\ \mathbf{J}_1 & & & & & \mathbf{J}_2 \end{bmatrix}$$

Where $\mathbf{J}_1 \in \mathbb{F}_q[\mathbf{X}_{o+1}, \dots, \mathbf{X}_n]^{m \times o}$ and $\mathbf{J}_2 \in \mathbb{F}_q[\mathbf{X}_1, \dots, \mathbf{X}_n]^{m \times (n-o)}$.

Structured equations yield a structured Jacobian

Algebraic private key

[Kipnis, Patarin, Goubin 1999]

Private key \mathcal{F} : m polynomials linear in $\mathbf{X}_1, \dots, \mathbf{X}_o$, a linear map A : $1 \leq i \leq m$, $p_i = f_i \circ A$.

Secret Jacobian

[P. Eurocrypt 2025]

The Jacobian of \mathcal{F} has a special shape when evaluated at $\mathbf{x} \in \mathcal{O}$:

$$\text{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} \partial \mathbf{X}_1 & \cdots & \partial \mathbf{X}_o & \partial \mathbf{X}_{o+1} & \cdots & \partial \mathbf{X}_n \\ 0 & & & & & J_2 \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_q[\mathbf{X}_{o+1}, \dots, \mathbf{X}_n]^{m \times o}$ and $J_2 \in \mathbb{F}_q[\mathbf{X}_1, \dots, \mathbf{X}_n]^{m \times (n-o)}$.

Structured equations yield a structured Jacobian

Algebraic private key

[Kipnis, Patarin, Goubin 1999]

Private key \mathcal{F} : m polynomials linear in $\mathbf{X}_1, \dots, \mathbf{X}_o$, a linear map A : $1 \leq i \leq m$, $p_i = f_i \circ A$.

Secret Jacobian

[P. Eurocrypt 2025]

The Jacobian of \mathcal{F} has a special shape when evaluated at $\mathbf{x} \in \mathcal{O}$:

$$\text{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} \partial \mathbf{X}_1 & \cdots & \partial \mathbf{X}_o & \partial \mathbf{X}_{o+1} & \cdots & \partial \mathbf{X}_n \\ 0 & & & & & J_2 \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_q[\mathbf{X}_{o+1}, \dots, \mathbf{X}_n]^{m \times o}$ and $J_2 \in \mathbb{F}_q[\mathbf{X}_1, \dots, \mathbf{X}_n]^{m \times (n-o)}$.

Main theorem: Dimension of the singular locus of $V(\mathcal{I})$

[P. Eurocrypt 2025]

UOV varieties admit a positive dimensional singular locus:

$$\dim \text{Sing}(V(\mathcal{I})) \geq 2 \dim \mathcal{O} + m - n - 1$$

An algebraic attack targeting singular points

Generic smoothness outside of the secret subspace \mathcal{O}

[P. Eurocrypt 2025]

For a **generic** UOV variety, \mathcal{I} is **radical** and $V(\mathcal{I})$ is **equidimensional of codimension m** .

In addition, $\text{Sing}(V(\mathcal{I})) \subset \mathcal{O}$ (if the base field is large enough).

An algebraic attack targeting singular points

Generic smoothness outside of the secret subspace \mathcal{O}

[P. Eurocrypt 2025]

For a **generic** UOV variety, \mathcal{I} is **radical** and $V(\mathcal{I})$ is **equidimensional of codimension** m .

In addition, $\text{Sing}(V(\mathcal{I})) \subset \mathcal{O}$ (if the base field is large enough).

Singular point attack

[P. Eurocrypt 2025]

Perform an **exponential time key recovery** by computing **singularities of the public key**.

An algebraic attack targeting singular points

Generic smoothness outside of the secret subspace \mathcal{O}

[P. Eurocrypt 2025]

For a **generic** UOV variety, \mathcal{I} is **radical** and $V(\mathcal{I})$ is **equidimensional of codimension** m .

In addition, $\text{Sing}(V(\mathcal{I})) \subset \mathcal{O}$ (if the base field is large enough).

Singular point attack

[P. Eurocrypt 2025]

Perform an **exponential time key recovery** by computing **singularities of the public key**.

Geometric interpretation of an old attack

[P. Eurocrypt 2025]

[KS'98/KPG'99] are (hybrid) singular point attacks. Weaken hypotheses and support heuristic analysis by estimating $|\text{Sing}(V(\mathcal{I}))|_{\mathbb{F}_q}$ with the Lang-Weil bound.

However, **algebraic attack** is more expensive than [KPG99] if q is “small”.

Can the singularities be hidden to prevent attacks?

UOV $\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace $t \leq 8$ polynomials by random quadratic polynomials, then mix.

$$\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ A, \quad \mathcal{I} = \langle p_1, \dots, p_o \rangle.$$

Can the singularities be hidden to prevent attacks?

UOV $\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace $t \leq 8$ polynomials by random quadratic polynomials, then mix.

$$\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ A, \quad \mathcal{I} = \langle p_1, \dots, p_o \rangle.$$

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Can the singularities be hidden to prevent attacks?

UOV $\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace $t \leq 8$ polynomials by random quadratic polynomials, then **mix**.

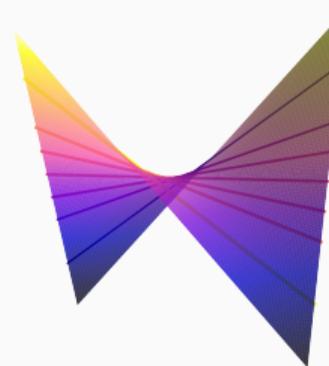
$$\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ A, \quad \mathcal{I} = \langle p_1, \dots, p_o \rangle.$$

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Geometric interpretation

$V(\mathcal{I})$ is the intersection of a UOV variety
with t generic quadrics.

$$V(\mathcal{I}) = \cap \underbrace{V(\mathcal{J})}_{\text{UOV variety}}$$



Can the singularities be hidden to prevent attacks?

UOV $\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace $t \leq 8$ polynomials by random quadratic polynomials, then mix.

$$\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ A, \quad \mathcal{I} = \langle p_1, \dots, p_o \rangle.$$

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Geometric interpretation

$V(\mathcal{I})$ is the intersection of a UOV variety
with t generic quadrics.

$$V(\mathcal{I}) = \underbrace{V(\mathcal{G})}_{\text{Generic quadrics}} \cap$$

Can the singularities be hidden to prevent attacks?

UOV $\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace $t \leq 8$ polynomials by random quadratic polynomials, then **mix**.

$$\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ A, \quad \mathcal{I} = \langle p_1, \dots, p_o \rangle.$$

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Geometric interpretation

$V(\mathcal{I})$ is the intersection of a UOV variety
with t generic quadrics.

$$V(\mathcal{I}) = \underbrace{V(\mathcal{G})}_{\text{Generic quadrics}} \cap \underbrace{V(\mathcal{J})}_{\text{UOV variety}}$$

Can the singularities be hidden to prevent attacks?

UOV $\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace $t \leq 8$ polynomials by random quadratic polynomials, then **mix**.

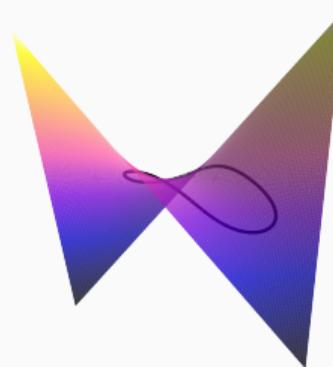
$$\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ A, \quad \mathcal{I} = \langle p_1, \dots, p_o \rangle.$$

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Geometric interpretation

$V(\mathcal{I})$ is the intersection of a UOV variety
with t generic quadrics.

$$V(\mathcal{I}) = \underbrace{V(\mathcal{G})}_{\text{Generic quadrics}} \cap \underbrace{V(\mathcal{J})}_{\text{UOV variety}}$$



Can the singularities be hidden to prevent attacks?

UOV $\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

In a UOV private key, replace $t \leq 8$ polynomials by random quadratic polynomials, then mix.

$$\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ A, \quad \mathcal{I} = \langle p_1, \dots, p_o \rangle.$$

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Geometric interpretation

$V(\mathcal{I})$ is the intersection of a UOV variety
with t generic quadrics.

$$V(\mathcal{I}) = \underbrace{V(\mathcal{G})}_{\text{Generic quadrics}} \cap \underbrace{V(\mathcal{J})}_{\text{UOV variety}}$$

Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\mathbf{x} \in \mathcal{O}$:

$$\text{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} \partial \mathbf{X}_1 & \cdots & \partial \mathbf{X}_o & \partial \mathbf{X}_{o+1} & \cdots & \partial \mathbf{X}_n \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & & & & J_1 & \\ & & & & & J_2 \\ & & & & & \vdots \\ & & & & & o \end{bmatrix}_{t+1 \times o}$$

$$\text{Jac}_{\mathcal{P}}(\mathbf{X}) = \mathcal{S}^{-1} \text{Jac}_{\mathcal{F}}(A^{-1} \mathbf{X}) \cdot A^{-1}$$

Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\mathbf{x} \in \mathcal{O}$:

$$\text{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} \partial \mathbf{X}_1 & \cdots & \partial \mathbf{X}_o & \partial \mathbf{X}_{o+1} & \cdots & \partial \mathbf{X}_n \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & & & & J_1 & \\ & & & & & J_2 \\ \vdots & & & & & \vdots \\ & & & & & o \end{bmatrix}_{t+1 \times o}$$

$$\text{Jac}_{\mathcal{P}}(\mathbf{X}) = \mathcal{S}^{-1} \text{Jac}_{\mathcal{F}}(A^{-1} \mathbf{X}) \cdot A^{-1}$$

Observation

The singular locus of $V(\mathcal{I})$ contains $(\text{Sing } V(\mathcal{J})) \cap V(\mathcal{G})$.

Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\mathbf{x} \in \mathcal{O}$:

$$\text{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} \partial \mathbf{X}_1 & \cdots & \partial \mathbf{X}_o & \partial \mathbf{X}_{o+1} & \cdots & \partial \mathbf{X}_n \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & & & & J_1 & \\ & & & & & J_2 \\ \vdots & & & & & \vdots \\ & & & & & t+1 \end{bmatrix}_o$$

$$\text{Jac}_{\mathcal{P}}(\mathbf{X}) = \mathcal{S}^{-1} \text{Jac}_{\mathcal{F}}(A^{-1} \mathbf{X}) \cdot A^{-1}$$

Observation

The singular locus of $V(\mathcal{I})$ contains $(\text{Sing } V(\mathcal{J})) \cap V(\mathcal{G})$.

Dimension computation

[P. 2025]

$\hat{+}$ reduces the dimension of the singular locus by at most $2t$ compared with UOV.

From singular points to a key recovery attack

$V(\mathcal{I})$ is the UOV $+$ public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

$$\text{Sing}(V(\mathcal{I})) \subset \text{Sing}(V(\mathcal{J})) \subset \mathcal{O}$$

From singular points to a key recovery attack

$V(\mathcal{I})$ is the UOV $+$ public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

$$\text{Sing}(V(\mathcal{I})) \subset \text{Sing}(V(\mathcal{J})) \subset \mathcal{O}$$

Singular points of $V(\mathcal{I})$

$\approx q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x}) = 0$, with q^{o-1} candidates.

From singular points to a key recovery attack

$V(\mathcal{I})$ is the UOV $\hat{+}$ public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

$$\text{Sing}(V(\mathcal{I})) \subset \text{Sing}(V(\mathcal{J})) \subset \mathcal{O}$$

Singular points of $V(\mathcal{I})$

$\approx q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x}) = 0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t} n^\omega)$. Same as Kipnis Shamir [KPG'99] attack against UOV $\hat{+}$.

From singular points to a key recovery attack

$V(\mathcal{I})$ is the UOV $\hat{+}$ public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

$$\text{Sing}(V(\mathcal{I})) \subset \text{Sing}(V(\mathcal{J})) \subset \mathcal{O}$$

Singular points of $V(\mathcal{I})$

$\approx q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x}) = 0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t} n^\omega)$. Same as Kipnis Shamir [KPG'99] attack against UOV $\hat{+}$.

Singular points of $V(\mathcal{J})$

$\approx q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

Expected number of trials: $O(q^{n-2o+t})$

From singular points to a key recovery attack

$V(\mathcal{I})$ is the UOV $\hat{+}$ public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

$$\text{Sing}(V(\mathcal{I})) \subset \text{Sing}(V(\mathcal{J})) \subset \mathcal{O}$$

Singular points of $V(\mathcal{I})$

$\approx q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x}) = 0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t} n^\omega)$. Same as Kipnis Shamir [KPG'99] attack against UOV $\hat{+}$.

Singular points of $V(\mathcal{J})$

$\approx q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

Expected number of trials: $O(q^{n-2o+t})$ but $\mathcal{P}(\mathbf{x}) \neq 0$.

From singular points to a key recovery attack

$V(\mathcal{I})$ is the UOV $\hat{+}$ public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

$$\text{Sing}(V(\mathcal{I})) \subset \text{Sing}(V(\mathcal{J})) \subset \mathcal{O}$$

Singular points of $V(\mathcal{I})$

$\approx q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x}) = 0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t} n^\omega)$. Same as Kipnis Shamir [KPG'99] attack against UOV $\hat{+}$.

Singular points of $V(\mathcal{J})$

$\approx q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

Expected number of trials: $O(q^{n-2o+t})$ but $\mathcal{P}(\mathbf{x}) \neq 0$.

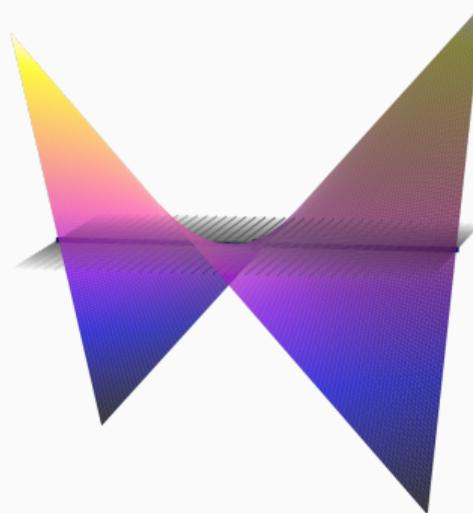
Can we decide " $\mathbf{x} \in \mathcal{O}$?" faster than $O(q^t n^\omega)$?

Adapting “ $x \in \mathcal{O}?$ ” to UOV^{\dagger} efficiently

Previous result for UOV

[P. 2024]

Decide $x \in \mathcal{O}?$ in polynomial time: $x \in \mathcal{O} \implies \mathcal{O} \subset T_x V.$



Adapting “ $x \in \mathcal{O}?$ ” to UOV^\dagger efficiently

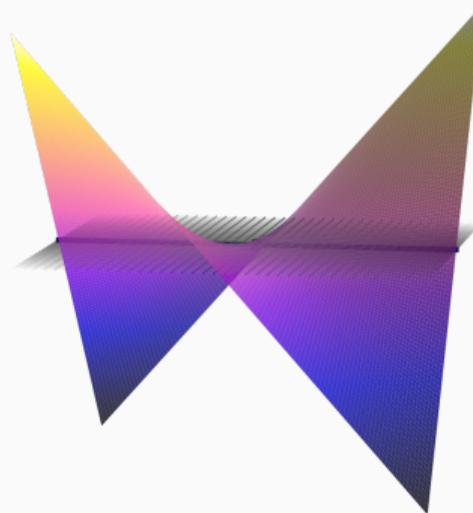
Previous result for UOV

[P. 2024]

Decide $x \in \mathcal{O}?$ in polynomial time: $x \in \mathcal{O} \implies \mathcal{O} \subset T_x V.$

Tangent spaces again

$x \in \mathcal{O} \implies \mathcal{O} \cap T_x V$ has large dimension.



Adapting “ $x \in \mathcal{O}?$ ” to UOV^{\dagger} efficiently

Previous result for UOV

[P. 2024]

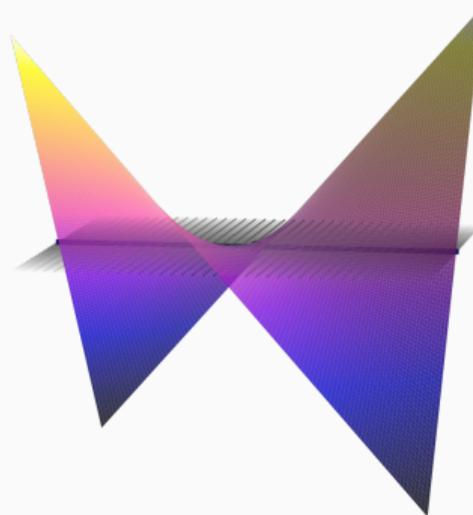
Decide $x \in \mathcal{O}?$ in polynomial time: $x \in \mathcal{O} \implies \mathcal{O} \subset T_x V.$

Tangent spaces again

$x \in \mathcal{O} \implies \mathcal{O} \cap T_x V$ has large dimension.

Restricting to the tangent space $T_x V$

$\mathcal{P}|_{T_x V}(x)$ is an easy UOV^{\dagger} instance if $x \in \mathcal{O}.$
→ Decide in polynomial time.



New attack on $\text{UOV}^\dagger/\text{VOX}$

[Patarin, Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud 2023]

$x \in \mathcal{O}?$ in polynomial time

[P. Eurocrypt 2025]

Decide $x \in \mathcal{O}?$ using $O\left(\binom{n-o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}\right) \subset O(n^{10})$ arithmetic operations.

New attack on $\text{UOV}^\dagger/\text{VOX}$

[Patarin, Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud 2023]

$x \in \mathcal{O}?$ in polynomial time

[P. Eurocrypt 2025]

Decide $x \in \mathcal{O}?$ using $O\left(\binom{n-o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}\right) \subset O(n^{10})$ arithmetic operations.

Singular points attack and asymptotic result

[P. Eurocrypt 2025]

Singular points of $V(\mathcal{J})$ leak the trapdoor **without inverting \mathcal{S}** .

$$O\left(\underbrace{q^{n-2o+\textcolor{red}{t}}}_{\# \text{ trials}} \cdot \underbrace{\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}}_{\text{Cost of each trial from } x \in \mathcal{O}?\text{}}\right).$$

New attack on $\text{UOV}^\dagger/\text{VOX}$

[Patarin, Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud 2023]

$x \in \mathcal{O}?$ in polynomial time

[P. Eurocrypt 2025]

Decide $x \in \mathcal{O}?$ using $O\left(\binom{n-o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}\right) \subset O(n^{10})$ arithmetic operations.

Singular points attack and asymptotic result

[P. Eurocrypt 2025]

Singular points of $V(\mathcal{J})$ leak the trapdoor **without inverting \mathcal{S}** .

$$O\left(\underbrace{q^{n-2o+\textcolor{red}{t}}}_{\# \text{ trials}} \cdot \underbrace{\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}}_{\text{Cost of each trial from } x \in \mathcal{O}?\text{}}\right).$$

Previous result

This attack improves the **Kipnis-Shamir** attack which required:

$$O(q^{n-2o+2t} n^\omega)$$

Practical results and bit complexity

Parameters	I	III	V
\log_2 gates	2^{39}	2^{41}	2^{43}
Time	2.3s	7.1s	16.4s

Figure 1: $x \in \mathcal{O}?$ with `msolve`¹ on UOV^\dagger .

Intel i7 @ 2.80GHz, 8GB RAM.

¹msolve.lip6.fr *Implementation under MIT licence*

Practical results and bit complexity

Parameters	I	III	V
\log_2 gates	2^{39}	2^{41}	2^{43}
Time	2.3s	7.1s	16.4s

Figure 1: $x \in \mathcal{O}?$ with `msolve`¹ on UOV^\dagger .

Intel i7 @ 2.80GHz, 8GB RAM.

¹msolve.lip6.fr *Implementation under MIT licence*

Parameters	I	III	V
Security level (\log_2 gates)	2^{143}	2^{207}	2^{272}
Kipnis-Shamir (\log_2 gates)	2^{166}	2^{233}	2^{313}
This work (\log_2 gates)	2^{140}	2^{188}	2^{243}

Figure 2: Full attack on UOV^\dagger .

Practical results and bit complexity

Parameters	I	III	V
\log_2 gates	2^{39}	2^{41}	2^{43}
Time	2.3s	7.1s	16.4s

Figure 1: $x \in \mathcal{O}$? with `msolve`¹ on UOV $\hat{+}$.

Intel i7 @ 2.80GHz, 8GB RAM.

¹msolve.lip6.fr *Implementation under MIT licence*

Parameters	I	III	V
Security level (\log_2 gates)	2^{143}	2^{207}	2^{272}
Kipnis-Shamir (\log_2 gates)	2^{166}	2^{233}	2^{313}
This work (\log_2 gates)	2^{140}	2^{188}	2^{243}

Figure 2: Full attack on UOV $\hat{+}$.

Cryptanalysis

- Initial UOV $\hat{+}$ parameter sets **do not meet NIST security requirement**.
- We propose alternative parameters for UOV $\hat{+}$ achieving between 27%-44% (expanded) public key size reduction compared with UOV.

Practical results and bit complexity

Parameters	I	III	V
\log_2 gates	2^{39}	2^{41}	2^{43}
Time	2.3s	7.1s	16.4s

Figure 1: $x \in \mathcal{O}$? with `msolve`¹ on UOV^\dagger .

Intel i7 @ 2.80GHz, 8GB RAM.

¹msolve.lip6.fr *Implementation under MIT licence*

Parameters	I	III	V
Security level (\log_2 gates)	2^{143}	2^{207}	2^{272}
Kipnis-Shamir (\log_2 gates)	2^{166}	2^{233}	2^{313}
This work (\log_2 gates)	2^{140}	2^{188}	2^{243}

Figure 2: Full attack on UOV^\dagger .

Cryptanalysis

- Initial UOV^\dagger parameter sets **do not meet NIST security requirement**.
- We propose alternative parameters for UOV^\dagger achieving between 27%-44% (expanded) public key size reduction compared with UOV .

Can we do better?

Special case of UOV^\dagger called VOX with **additional structure** was submitted to NIST.

Can we exploit that structure to improve our attack?

Dimension computation for VOX, seen as $\text{QR-UOV}^{\dagger}(q, n, m, t, \ell)$

Dimension computation for VOX, seen as QR-UOV $\hat{+}(q, n, m, t, \ell)$

QR compression enables **big field attack**: UOV $\hat{+}(q^\ell, m/\ell, n/\ell, m, t)$ defines a **variety that contains** $\mathcal{O} \cap V(\mathcal{G})$ but it should be the **empty variety** for a generic system.

Dimension computation for VOX, seen as QR-UOV $\hat{+}(q, n, m, t, \ell)$

QR compression enables **big field attack**: UOV $\hat{+}(q^\ell, m/\ell, n/\ell, m, t)$ defines a **variety that contains** $\mathcal{O} \cap V(\mathcal{G})$ but it should be the **empty variety** for a generic system.

Initial VOX parameters are insecure

MinRank attack [Furue, Ikematsu 2023]

Direct attack [P. 2024b]

Parameters	I	III	V
ℓ	6	7	8
ℓ'	6	7	8
Time	0.03s	0.11s	0.32s

Timing for the subfield attack on VOX, on Intel i7 @ 2.80GHz 8GB RAM with **msolve**.

Dimension computation for VOX, seen as QR-UOV $\hat{+}(q, n, m, t, \ell)$

QR compression enables **big field attack**: UOV $\hat{+}(q^\ell, m/\ell, n/\ell, m, t)$ defines a **variety that contains** $\mathcal{O} \cap V(\mathcal{G})$ but it should be the **empty variety** for a generic system.

Initial VOX parameters are insecure

MinRank attack [Furue, Ikematsu 2023]

Direct attack [P. 2024b]

Subfield attack

[P. 2024b]

Alternative parameters exposed to direct attack through **subfields** $\mathbb{F}_{q^{\ell'}} \subset \mathbb{F}_q$.

Parameters	I	III	V
ℓ	6	7	8
ℓ'	6	7	8
Time	0.03s	0.11s	0.32s

Ic	IIIa	Vb
9	15	14
3	5	7
400h ¹	83.4s	12.4s

Timing for the subfield attack on VOX, on Intel i7 @ 2.80GHz 8GB RAM with **msolve**.

Implementation available under MIT licence.

¹on Intel Xeon E7-4820, at 2.00GHz, peaking at 54.3GB RAM usage.

Future and on-going work - 1

Precomputations for undetermined systems

Task: Reduce $MQ(n, m)$ to $MQ(m - k, m - k)$.

For UOV, $k = 1$ in any field [Cheng, Hashimoto, Miura, Takagi 2014]. Can we go **beyond** $k = 1$?

→ *WIP*: Adapt work of Reid for $k = 2$.

Future and on-going work - 1

Precomputations for undetermined systems

Task: Reduce $MQ(n, m)$ to $MQ(m - k, m - k)$.

For UOV, $k = 1$ in any field [Cheng, Hashimoto, Miura, Takagi 2014]. Can we go **beyond** $k = 1$?

→ *WIP*: Adapt work of Reid for $k = 2$.

Genericity results on UOV

Are non-generic UOV keys **weaker**?

Generalize genericity results to all UOV variants.

→ ex: non-radical ideal implies easier attack?

Future and on-going work - 1

Precomputations for undetermined systems

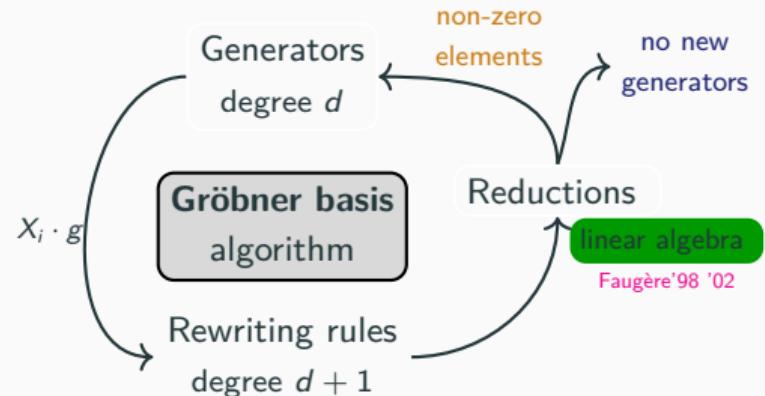
Task: Reduce $MQ(n, m)$ to $MQ(m - k, m - k)$.
For UOV, $k = 1$ in any field [Cheng, Hashimoto, Miura, Takagi 2014]. Can we go **beyond** $k = 1$?
→ *WIP*: Adapt work of Reid for $k = 2$.

Genericity results on UOV

Are non-generic UOV keys **weaker**?
Generalize genericity results to all UOV variants.
→ ex: non-radical ideal implies easier attack?

Linear polynomials in Gröbner bases

If \mathcal{J} radical and $V(\mathcal{J}) \subset \mathcal{O}$, then DRL Gröbner bases of \mathcal{J} contain **linear polynomials**.



Future and on-going work - 1

Precomputations for undetermined systems

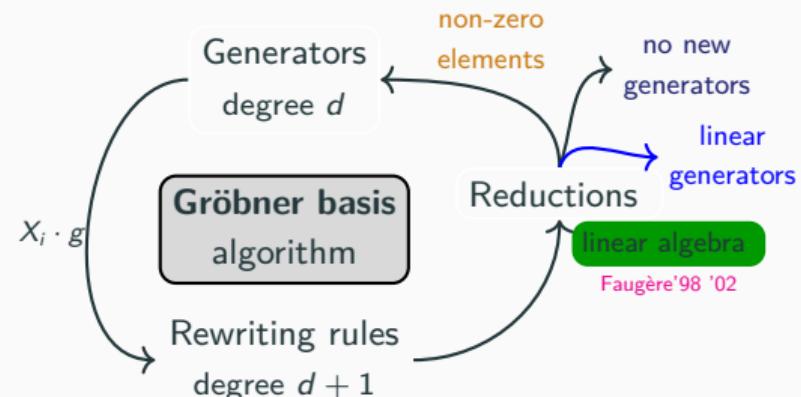
Task: Reduce $MQ(n, m)$ to $MQ(m - k, m - k)$.
For UOV, $k = 1$ in any field [Cheng, Hashimoto, Miura, Takagi 2014]. Can we go **beyond** $k = 1$?
→ *WIP*: Adapt work of Reid for $k = 2$.

Genericity results on UOV

Are non-generic UOV keys **weaker**?
Generalize genericity results to all UOV variants.
→ ex: non-radical ideal implies easier attack?

Linear polynomials in Gröbner bases

If \mathcal{J} radical and $V(\mathcal{J}) \subset \mathcal{O}$, then DRL Gröbner bases of \mathcal{J} contain **linear polynomials**.



Future and on-going work - 2

Cryptanalysis of MAYO [Beullens 21]

Small dimension of secret subspace defeats UOV attacks.

- Algebraic structure induced by MAYO's whipped-up transform?
- Exploit **large** pre-image of signatures in EUF-CMA attacks?

	Signature (bytes)	Public key (bytes)
UOV-1p	128	43 576
MAYO-1	454	1420
MAYO-2	186	4912

Figure 3: Sizes at security level one.

Future and on-going work - 2

Cryptanalysis of MAYO [Beullens 21]

Small dimension of secret subspace defeats UOV attacks.

- Algebraic structure induced by MAYO's whipped-up transform?
- Exploit **large** pre-image of signatures in EUF-CMA attacks?

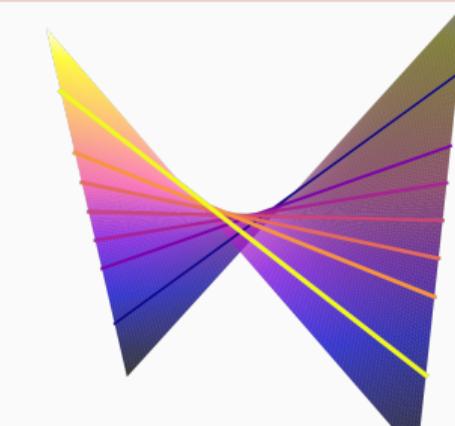
Polar varieties of UOV

$$V = V(\langle p_1, p_2, p_3 \rangle)$$

$$\text{crit}(\pi_A, V) := \{x \in V, d_x \pi_A \text{ not surjective}\}$$

	Signature (bytes)	Public key (bytes)
UOV-1p	128	43 576
MAYO-1	454	1420
MAYO-2	186	4912

Figure 3: Sizes at security level one.



Future and on-going work - 2

Cryptanalysis of MAYO [Beullens 21]

Small dimension of secret subspace defeats UOV attacks.

- Algebraic structure induced by MAYO's whipped-up transform?
- Exploit **large** pre-image of signatures in EUF-CMA attacks?

Polar varieties of UOV

$$V = V(\langle p_1, p_2, p_3 \rangle)$$

$$\text{crit}(\pi_A, V) := \{x \in V, d_x \pi_A \text{ not surjective}\}$$

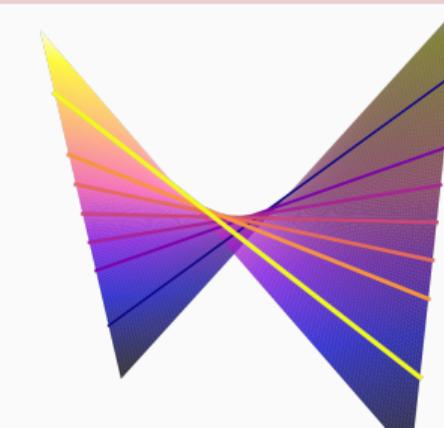
$$\mathcal{O}^\perp \subset A \implies \mathcal{O} \subset \text{crit}(\pi_A, V)$$

$$\mathcal{O} \subset \text{crit}(\pi_{A_1}, V) \cap \dots \cap \text{crit}(\pi_{A_\ell}, V)$$

$$(\bigcap \text{crit}(\pi_{A_i}, V)) \setminus Z = \text{crit}(\bigcap \pi_{A_i}, V) \setminus Z$$

	Signature (bytes)	Public key (bytes)
UOV-1p	128	43 576
MAYO-1	454	1420
MAYO-2	186	4912

Figure 3: Sizes at security level one.



Future and on-going work - 2

Cryptanalysis of MAYO [Beullens 21]

Small dimension of secret subspace defeats UOV attacks.

- Algebraic structure induced by MAYO's whipped-up transform?
- Exploit **large** pre-image of signatures in EUF-CMA attacks?

Polar varieties of UOV

$$V = V(\langle p_1, p_2, p_3 \rangle)$$

$$\text{crit}(\pi_A, V) := \{x \in V, d_x \pi_A \text{ not surjective}\}$$

$$\mathcal{O}^\perp \subset A \implies \mathcal{O} \subset \text{crit}(\pi_A, V)$$

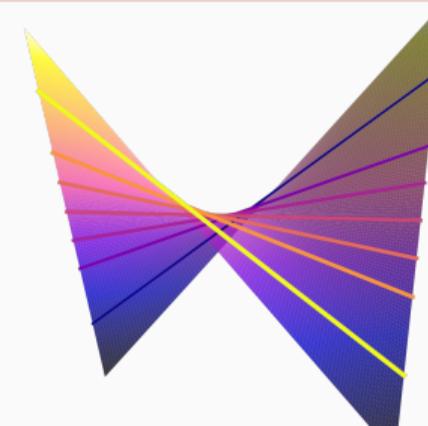
$$\mathcal{O} \subset \text{crit}(\pi_{A_1}, V) \cap \dots \cap \text{crit}(\pi_{A_\ell}, V)$$

$$(\bigcap \text{crit}(\pi_{A_i}, V)) \setminus Z = \text{crit}(\bigcap \pi_{A_i}, V) \setminus Z$$

→ Dimension, degree and computational cost understood for a fixed projection.

	Signature (bytes)	Public key (bytes)
UOV-1p	128	43 576
MAYO-1	454	1420
MAYO-2	186	4912

Figure 3: Sizes at security level one.



Proposed UOV $\hat{+}$ parameters

Level	q, o, v, t	epk gain vs UOV
I	251, 48, 55, 6	36%
III	1021, 70, 79, 7	44%
V	4093, 96, 107, 8	27%

Genericity in the Zariski topology

Zariski topology on \mathbb{K}^n

Zariski-closed sets are algebraic varieties.

A property is **Zariski-generic** if it holds on a non-empty Zariski-open set.

Genericity in the Zariski topology

Zariski topology on \mathbb{K}^n

Zariski-closed sets are algebraic varieties.

A property is **Zariski-generic** if it holds on a non-empty Zariski-open set.

Example: generic smoothness

The curve of equation $Y^2 - X^3 + 3X - 2 = 0$ is **singular**. Are all curves of equation $E_{a,b} : Y^2 - X^3 - aX - b = 0$ singular?

Genericity in the Zariski topology

Zariski topology on \mathbb{K}^n

Zariski-closed sets are algebraic varieties.

A property is **Zariski-generic** if it holds on a non-empty Zariski-open set.

Example: generic smoothness

The curve of equation $Y^2 - X^3 + 3X - 2 = 0$ is **singular**. Are all curves of equation $E_{a,b} : Y^2 - X^3 - aX - b = 0$ singular?

Methodology

Consider a, b as **variables** and study the equation $\text{Jac}_E(a, b) = (0, 0)$.

Genericity in the Zariski topology

Zariski topology on \mathbb{K}^n

Zariski-closed sets are algebraic varieties.

A property is **Zariski-generic** if it holds on a non-empty Zariski-open set.

Example: generic smoothness

The curve of equation $Y^2 - X^3 + 3X - 2 = 0$ is **singular**. Are all curves of equation $E_{a,b} : Y^2 - X^3 - aX - b = 0$ singular?

Methodology

Consider a, b as **variables** and study the equation $\text{Jac}_E(a, b) = (0, 0)$.

$$\text{Jac}_E(a, b) = (0, 0) \iff \delta(a, b) = 4a^3 + 27b^2 = 0.$$

Genericity in the Zariski topology

Zariski topology on \mathbb{K}^n

Zariski-closed sets are algebraic varieties.

A property is **Zariski-generic** if it holds on a non-empty Zariski-open set.

Example: generic smoothness

The curve of equation $Y^2 - X^3 + 3X - 2 = 0$ is **singular**. Are all curves of equation $E_{a,b} : Y^2 - X^3 - aX - b = 0$ singular?

Methodology

Consider a, b as **variables** and study the equation $\text{Jac}_E(a, b) = (0, 0)$.

$$\text{Jac}_E(a, b) = (0, 0) \iff \delta(a, b) = 4a^3 + 27b^2 = 0.$$

Therefore, if the **discriminant** $\delta(a, b)$ is non-zero, $E_{a,b}$ is **smooth**.

Genericity in the Zariski topology

Zariski topology on \mathbb{K}^n

Zariski-closed sets are algebraic varieties.

A property is **Zariski-generic** if it holds on a non-empty Zariski-open set.

Example: generic smoothness

The curve of equation $Y^2 - X^3 + 3X - 2 = 0$ is **singular**. Are all curves of equation $E_{a,b} : Y^2 - X^3 - aX - b = 0$ singular?

Methodology

Consider a, b as **variables** and study the equation $\text{Jac}_E(a, b) = (0, 0)$.

$$\text{Jac}_E(a, b) = (0, 0) \iff \delta(a, b) = 4a^3 + 27b^2 = 0.$$

Therefore, if the **discriminant** $\delta(a, b)$ is non-zero, $E_{a,b}$ is **smooth**.

Examples of generic properties of UOV ideals and varieties:

- UOV keys generically generate radical ideals of the expected dimension.
- UOV varieties are generically equidimensional complete intersections.
- UOV varieties are generically smooth... outside of \mathcal{O} .

Genericity in the Zariski topology

Zariski topology on \mathbb{K}^n

Zariski-closed sets are algebraic varieties.

A property is **Zariski-generic** if it holds on a non-empty Zariski-open set.

Example: generic smoothness

The curve of equation $Y^2 - X^3 + 3X - 2 = 0$ is **singular**. Are all curves of equation $E_{a,b} : Y^2 - X^3 - aX - b = 0$ singular?

Methodology

Consider a, b as **variables** and study the equation $\text{Jac}_E(a, b) = (0, 0)$.

$$\text{Jac}_E(a, b) = (0, 0) \iff \delta(a, b) = 4a^3 + 27b^2 = 0.$$

Therefore, if the **discriminant** $\delta(a, b)$ is non-zero, $E_{a,b}$ is **smooth**.

Examples of generic properties of UOV ideals and varieties:

- UOV keys generically generate radical ideals of the expected dimension.
- UOV varieties are generically equidimensional complete intersections.
- **UOV varieties are generically smooth... outside of \mathcal{O} .**

How many equations characterize the secret?

$$\text{Let } \delta(n, s, r) = (r+1)(n-r) - s \binom{r+2}{2}$$

The Debarre and Manivel Bound¹

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n .

¹The original statement is for arbitrary degrees.

How many equations characterize the secret?

$$\text{Let } \delta(n, s, r) = (r+1)(n-r) - s \binom{r+2}{2}$$

The Debarre and Manivel Bound¹

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n .

- If $\delta(n, s, r) < 0$, then X contains no (proj.) r -dimensional subspaces

¹The original statement is for arbitrary degrees.

How many equations characterize the secret?

$$\text{Let } \delta(n, s, r) = (r+1)(n-r) - s \binom{r+2}{2}$$

The Debarre and Manivel Bound¹

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n .

- If $\delta(n, s, r) < 0$, then X contains no (proj.) r -dimensional subspaces
- Otherwise, $\delta(n, s, r)$ is the dimension of the variety of linear spaces included in X .

¹The original statement is for arbitrary degrees.

How many equations characterize the secret?

$$\text{Let } \delta(n, s, r) = (r+1)(n-r) - s \binom{r+2}{2}$$

The Debarre and Manivel Bound¹

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n .

- If $\delta(n, s, r) < 0$, then X contains no (proj.) r -dimensional subspaces
- Otherwise, $\delta(n, s, r)$ is the dimension of the variety of linear spaces included in X .

Application to UOV

If $\alpha = \frac{n}{s}$ is a constant, then a UOV secret is characterized by a constant number of polynomials from the public key.

For practical parameters, 3 or 4 polynomials are enough.

¹The original statement is for arbitrary degrees.