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Ancient problem, modern solutions

Historical ciphers
• Polybus (150 B.C.)
• Caesar (50 B.C.)
• Vigenère (1586)

pen-and-paper ciphers

Symmetric cryptography
• One-time-pad (1917)
• Enigma (WWII)
• DES/AES (1977/2000)

electromechanical/block ciphers

Public key cryptography
• Diffie, Hellman (1973)
• Rivest, Shamir, Adleman (1977)
• EdDSA (2011)

−→ secure internet, credit cards ...

Secret key: one key per link:
6 participants: 15 keys.
100 participants: 4950 keys.

Public key: one key per node:
6 participants: 6 keys.
100 participants: 100 keys.
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pen-and-paper ciphers

Symmetric cryptography
• One-time-pad (1917)
• Enigma (WWII)
• DES/AES (1977/2000)

electromechanical/block ciphers

Public key cryptography
• Diffie, Hellman (1973)
• Rivest, Shamir, Adleman (1977)
• EdDSA (2011)

−→ secure internet, credit cards ...

Modern cybersecurity goals
• Confidentiality: the information is only available to the intended recipient.
• Integrity: the information has not been modified after being sent.
• Authenticity: the information was sent by a specific, authenticated sender.
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The public key revolution [Diffie, Hellman 1973]

Problem
• How to authenticate oneself over an untrusted network?
• How to verify integrity over an untrusted network?

Alice

Bob

Eve
“... -Bob”

“... -Bob”

Solution: Public key cryptography [Diffie, Hellman 1973]

• Bob generates a key pair: a private key , and a public key available to all

• Bob signs his message with his private key
• public key enables Alice to verify Bob’s signature of the message

Can Eve pretend to be Bob?
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The public key revolution [Diffie, Hellman 1973]
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$

Bob

Eve
“$5 -Bob”

“$1M -Bob”
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New revolution: Post Quantum Cryptography

Signatures in protocols
• TLS: create a secure channel over an

untrusted network. in your browser
• DNSSEC, SSH, . . .

Quantum threat
If Eve has a large quantum computer, she can
compute private keys in these protocols [Shor 94].

Can we obtain Post-Quantum TLS?

Good news: many quantum-hard problems
• Finding short vectors in Euclidean lattices

• Decoding error-correcting codes
• Computing isogenies
• Solving systems of polynomial equations
• . . .
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Can we obtain Post-Quantum TLS?

Good news: many quantum-hard problems
• Finding short vectors in Euclidean lattices

• Decoding error-correcting codes
• Computing isogenies
• Solving systems of polynomial equations
• . . .

Source: IBM Research.
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Systems of multivariate polynomial equations

Algebraic geometry
The set of solutions of an algebraic equation
is a geometric object called a variety.

X 2 + Y 2 − 1 = 0

YES
NO

Polynomial system solving is NP

-hard

• Testing a solution is easy: “Is (1, 0) a solution?”

−→ NO.
• Finding a solution is hard in degree at least two. see [Garey, Johnson 1979]

Solving linear systems of equations is easy
Polynomial time algorithms for many linear algebra problems.
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Systems of multivariate polynomial equations

Algebraic geometry
The set of solutions of an algebraic equation
is a geometric object called a variety.

2X + 7Y = 0

YES

3X + 1Y = 0

NO

Polynomial system solving is NP-hard
• Testing a solution is easy: “Is (1, 0) a solution?”

−→ NO.

• Finding a solution is hard in degree at least two. see [Garey, Johnson 1979]

Solving linear systems of equations is easy
Polynomial time algorithms for many linear algebra problems. 4/23



Unbalanced Oil and Vinegar [Patarin ’97] [Kipnis, Patarin, Goubin ’99]

Multivariate signature schemes: a template
• Public key: a system of polynomial equations of degree two −→ Hard to solve
• Signature: a solution of the public system of polynomial equations
• Verification: testing that a solution is correct −→ Easy to verify

5/23



Unbalanced Oil and Vinegar [Patarin ’97] [Kipnis, Patarin, Goubin ’99]

Multivariate signature schemes: a template
• Public key: a system of polynomial equations of degree two −→ Hard to solve
• Signature: a solution of the public system of polynomial equations
• Verification: testing that a solution is correct −→ Easy to verify

Oil and Vinegar
Private key: reduce to the linear case [Patarin ’97]

Example: oil is Y,Z; vinegar is X.
Z − XY = 0.

Set X = 1, then the polynomial is linear
(1, 0, 0) + R(0, 1, 1).
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Multivariate signature schemes: a template
• Public key: a system of polynomial equations of degree two −→ Hard to solve
• Signature: a solution of the public system of polynomial equations
• Verification: testing that a solution is correct −→ Easy to verify

Original (U)OV formulation
Private key: polynomials f1, . . . , fm ∈ Fq[X1, . . . , Xn] linear in X1, . . . , Xo , A ∈ GLn(Fq).

Public key: polynomials p1, . . . , pm ∈ Fq[X1, . . . , Xn], with pi = XT · Pi · X = fi ◦ A.
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Cryptanalysis of UOV: forgery

Problem
Is it hard to find a solution of a random system of quadratic equations over a finite field?

Applications: biology, optimization, physics, robotics, ...

Mathematical history: [Descartes 1637], [Hilbert 1890],
[Macaulay 1916], ...
Gröbner basis algorithms & complexity: [Buchberger ’65],
[Lazard ’83], [Giusti ’84], [Traverso ’89] [Faugère ’99, 02],
[Bardet, Faugère, Salvy 04, 05, 15].
Quantum algorithms: [Grover ’96], [Faugère, Horan,
Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

Generators
degree d

Gröbner basis
algorithm

Rewriting rules
degree d + 1

Xi · g

Reductions
linear algebra

Faugère’98 ’02

non-zero
elements no new

generators

Direct attack
With Gröbner basis algorithms, public systems
are indistinguishable from random systems.

n, m UOV Generic
10, 4 6,16,6 6,16,6
12, 5 7, 32, 7 7, 32, 7
15, 6 9, 64, 8 9, 64, 8
17, 7 10, 128, 9 10, 128, 8

Dimension, degree and degree
of regularity for systems in n
variables and m quadratic
equations.
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Gröbner basis
algorithm

Rewriting rules
degree d + 1

Xi · g

Reductions
linear algebra

Faugère’98 ’02

non-zero
elements no new

generators

Direct attack
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Gröbner basis algorithms & complexity: [Buchberger ’65],
[Lazard ’83], [Giusti ’84], [Traverso ’89] [Faugère ’99, 02],
[Bardet, Faugère, Salvy 04, 05, 15].
Quantum algorithms: [Grover ’96], [Faugère, Horan,
Kahrobaei, Kaplan, Kashefi, Perret 17], [Bernstein, Yang 17]

Generators
degree d
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Mathematical history: [Descartes 1637], [Hilbert 1890],
[Macaulay 1916], ...
Gröbner basis algorithms & complexity: [Buchberger ’65],
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With Gröbner basis algorithms, public systems
are indistinguishable from random systems.

n, m UOV Generic
10, 4 6,16,6 6,16,6
12, 5 7, 32, 7 7, 32, 7
15, 6 9, 64, 8 9, 64, 8
17, 7 10, 128, 9 10, 128, 8

Dimension, degree and degree
of regularity for systems in n
variables and m quadratic
equations.

6/23



Cryptanalysis of UOV: forgery

Problem
Is it hard to find a solution of a random system of quadratic equations over a finite field?

Applications: biology, optimization, physics, robotics, ...

Mathematical history: [Descartes 1637], [Hilbert 1890],
[Macaulay 1916], ...
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With Gröbner basis algorithms, public systems
are indistinguishable from random systems.

n, m UOV Generic
10, 4 6,16,6 6,16,6
12, 5 7, 32, 7 7, 32, 7
15, 6 9, 64, 8 9, 64, 8
17, 7 10, 128, 9 10, 128, 8

Dimension, degree and degree
of regularity for systems in n
variables and m quadratic
equations.

6/23



Cryptanalysis of UOV: forgery

Problem
Is it hard to find a solution of a random system of quadratic equations over a finite field?

Applications: biology, optimization, physics, robotics, ...

Mathematical history: [Descartes 1637], [Hilbert 1890],
[Macaulay 1916], ...
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With Gröbner basis algorithms, public systems
are indistinguishable from random systems.

n, m UOV Generic
10, 4 6,16,6 6,16,6
12, 5 7, 32, 7 7, 32, 7
15, 6 9, 64, 8 9, 64, 8
17, 7 10, 128, 9 10, 128, 8

Dimension, degree and degree
of regularity for systems in n
variables and m quadratic
equations.

6/23



Exploiting the geometry of UOV

Original UOV formulation [Patarin 1997] [Kipnis, Patarin, Goubin 1999]
Private key: polynomials f1, . . . , fm ∈ Fq[X1, . . . , Xn] linear in X1, . . . , Xo .

Private key: there exists a linear subspace O ⊂ V (I), dim O = o. [Kipnis Shamir 1998]

Public key: p1, . . . , pm ∈ Fq[X1, . . . , Xn], I = ⟨p1, . . . , pm⟩, A ∈ GLn(Fq), pi = fi ◦ A.

Reduction to linear algebra [Kipnis-Shamir 1998] [Kipnis, Patarin, Goubin 1999]
• n = 2o: O is an invariant subspace of some public matrix.

Polynomial-time attack, by computing O(1) characteristic polynomials.

• n > 2o: O contains eigenvectors of some public matrices with probability ≈ q2o−n.
Exponential-time attack, by computing O(qn−2o) characteristic polynomials.
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Tangent spaces of the UOV variety

Notations
Public key: polynomials p1, . . . , pm ∈ Fq[X1, . . . , Xn], I = ⟨p1, . . . , pm⟩ radical, codimI = m.
Private key: a linear subspace O ⊂ V := V (I), where V is an equidimensional variety.

Can we distinguish points of V \ O from points of O? [P. PQC 2024]

• YES, there exists a polynomial-time algorithm deciding x ∈ O.
• As a byproduct, recover the full private key from one vector.

Previous result: Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008]
Given one vector x ∈ O and P, compute a basis of O in time exponential in n, m.
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Tangent spaces of the UOV variety
Input: a point x ∈ V .

Geometric observation
A linear subspace is tangent to itself.

∀x ∈ O, O ⊂ TxV

Tangent space at a regular point
The tangent space of V at x ∈ V is

TxV := ker(JacP(x))

JacP(x) =


∂p1
∂X1

· · · ∂p1
∂Xn...
...

∂pm
∂X1

· · · ∂pm
∂Xn


Algorithm
Compute the restriction of P to TxV . Matrices have low rank if and only if x ∈ O.

9/23



Tangent spaces of the UOV variety
Input: a point x ∈ V .

Geometric observation
A linear subspace is tangent to itself.

∀x ∈ O, O ⊂ TxV

Tangent space at a regular point
The tangent space of V at x ∈ V is

TxV := ker(JacP(x))

JacP(x) =


∂p1
∂X1

· · · ∂p1
∂Xn...
...

∂pm
∂X1

· · · ∂pm
∂Xn


Algorithm
Compute the restriction of P to TxV . Matrices have low rank if and only if x ∈ O.

9/23



Tangent spaces of the UOV variety
Input: a point x ∈ V .

Geometric observation
A linear subspace is tangent to itself.

∀x ∈ O, O ⊂ TxV

Tangent space at a regular point
The tangent space of V at x ∈ V is

TxV := ker(JacP(x))

JacP(x) =


∂p1
∂X1

· · · ∂p1
∂Xn...
...

∂pm
∂X1

· · · ∂pm
∂Xn


Algorithm
Compute the restriction of P to TxV . Matrices have low rank if and only if x ∈ O.

9/23



Tangent spaces of the UOV variety
Input: a point x ∈ V .

Geometric observation
A linear subspace is tangent to itself.

∀x ∈ O, O ⊂ TxV

Tangent space at a regular point
The tangent space of V at x ∈ V is

TxV := ker(JacP(x))

JacP(x) =


∂p1
∂X1

· · · ∂p1
∂Xn...
...

∂pm
∂X1

· · · ∂pm
∂Xn


Algorithm
Compute the restriction of P to TxV . Matrices have low rank if and only if x ∈ O.

9/23



Tangent spaces of the UOV variety
Input: a point x ∈ V .

Geometric observation
A linear subspace is tangent to itself.

∀x ∈ O, O ⊂ TxV

Tangent space at a regular point
The tangent space of V at x ∈ V is

TxV := ker(JacP(x))

JacP(x) =


∂p1
∂X1

· · · ∂p1
∂Xn...
...

∂pm
∂X1

· · · ∂pm
∂Xn



Algorithm
Compute the restriction of P to TxV . Matrices have low rank if and only if x ∈ O.

9/23



Tangent spaces of the UOV variety
Input: a point x ∈ V .

Geometric observation
A linear subspace is tangent to itself.

∀x ∈ O, O ⊂ TxV

Tangent space at a regular point
The tangent space of V at x ∈ V is

TxV := ker(JacP(x))

JacP(x) =


∂p1
∂X1

· · · ∂p1
∂Xn...
...

∂pm
∂X1

· · · ∂pm
∂Xn


Algorithm
Compute the restriction of P to TxV . Matrices have low rank if and only if x ∈ O.

9/23



Consequence: One vector to rule them all

Contribution: more than we bargained for [P. PQC 2024]
Given one vector x ∈ O and P = (p1, . . . , pm), compute a basis of O in polynomial-time
O(mnω), where 2 ≤ ω ≤ 3 is the exponent of matrix multiplication.

Security level I I III V
n, m 112, 44 160, 64 184, 72 244, 96
Time 1.7s 4.4s 5.7s 13.3s

[DCCCY 08] (gates) 255 265 275 292

This work (gates) 233 233 236 237

Previous result: Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008]
Given one vector x ∈ O and P, compute a basis of O in time exponential in n, m.

Complexity estimates and practical results with SageMath.
Experimental hardware: Intel i7 running at 2.80GHz with 8GB RAM.

Implementation available under MIT licence.
See also: [Aulbach, Campos, Krämer, Samardjiska, Stöttinger 2023]
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Singular points of UOV and VOX

Limits of our previous result and locality of the UOV secret
• Not a full attack: require side-channel or cryptanalysis to obtain a vector x ∈ O.

• The points of V (I) \ O give no information on O (or even its existence).

Questions
• Can we leverage tangent space structure in a key recovery attack?
• Consequences for UOV variants submitted to NIST?

Results [P. Eurocrypt 2025]
• YES, one obtains an algebraic variant of the Kipnis-Shamir attack [KPG ’99].

• Attack does not break UOV, but applies succesfully to UOV+̂/VOX.
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Singular points and dimension of the tangent space

Tangent space and Jacobian matrix
Assume V equidimensional and I radical.
The tangent space to V at x is the kernel
of the Jacobian matrix evaluated at x.

JacE (X , Y ) =
(

∂E
∂X , ∂E

∂Y
)

= (−3X 2 + 3, 2Y ).
JacE (1, 0) = (0, 0).

Singular points and tangent spaces
x ∈ V is singular if the Jacobian matrix
evaluated at x has a rank defect.

E : Y 2 − X 3 + 3X − 2 = 0.

Previous work on geometric attacks
[KS’98] computes singular points of the intersection of two quadrics [Luyten 23]
[KPG’99] computes singular points of V (I) Beullens, Castryck 23
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Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin 1999]
Private key F : m polynomials linear in X1, . . . , Xo , a linear map A: 1 ≤ i ≤ m, pi = fi ◦ A.

Secret Jacobian [P. Eurocrypt 2025]
The Jacobian of F has a special shape :

JacF (x) =


∂X1 · · · ∂Xo ∂Xo+1 · · · ∂Xn

J2


Where J1 ∈ Fq[Xo+1, . . . , Xn]m×o and J2 ∈ Fq[X1, . . . , Xn]m×(n−o).

Main theorem: Dimension of the singular locus of V (I) [P. Eurocrypt 2025]
UOV varieties admit a positive dimensional singular locus:
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An algebraic attack targeting singular points

Generic smoothness outside of the secret subspace O [P. Eurocrypt 2025]
For a generic UOV variety, I is radical and V (I) is equidimensional of codimension m.
In addition, Sing(V (I)) ⊂ O (if the base field is large enough).

Singular point attack [P. Eurocrypt 2025]
Perform an exponential time key recovery by computing singularities of the public key.

Geometric interpretation of an old attack [P. Eurocrypt 2025]
[KS’98/KPG’99] are (hybrid) singular point attacks. Weaken hypotheses and support
heuristic analysis by estimating |Sing(V (I))|Fq with the Lang-Weil bound.

However, algebraic attack is more expensive than [KPG99] if q is “small”.
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Can the singularities be hidden to prevent attacks?

UOV+̂ [Faugère, Macario-Rat, Patarin, Perret 2022]
In a UOV private key, replace t ≤ 8 polynomials by random quadratic polynomials, then mix.

P = S ◦ F ◦ A, I = ⟨p1, . . . , po⟩.

Analysis: O ̸⊂ V (I) =⇒ key attacks on UOV+̂ must invert S.

Geometric interpretation
V (I) is the intersection of a UOV variety

with t generic quadrics.

V (I) =

V (G)︸ ︷︷ ︸
Generic quadrics

∩

V (J )︸ ︷︷ ︸
UOV variety
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Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian
Jacobian of F when x ∈ O:

JacF (x) =



∂X1 · · · ∂Xo ∂Xo+1 · · · ∂Xn

t + 1
...
o

J1

0 J2


JacP(X) = S−1JacF (A−1X) · A−1

Observation
The singular locus of V (I) contains (SingV (J )) ∩ V (G).

Dimension computation [P. 2025]
+̂ reduces the dimension of the singular locus by at most 2t compared with UOV.
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From singular points to a key recovery attack

V (I) is the UOV+̂ public key variety, V (J ) is the underlying UOV variety.
Singular points (still) leak the trapdoor

Sing(V (I)) ⊂ Sing(V (J )) ⊂ O

Singular points of V (I)
≈ q3o−2t−n−1 singular points of V (I), and P(x) = 0, with qo−1 candidates.

Expected cost: O(qn−o+2tnω). Same as Kipnis Shamir [KPG’99] attack against UOV+̂.

Singular points of V (J )
≈ q3o−t−n−1 singular points of V (J ), with qo−1 candidates.

Expected number of trials: O(qn−2o+t) but P(x) ̸= 0.

Can we decide “x ∈ O?” faster than O(qtnω)?

17/23



From singular points to a key recovery attack

V (I) is the UOV+̂ public key variety, V (J ) is the underlying UOV variety.
Singular points (still) leak the trapdoor

Sing(V (I)) ⊂ Sing(V (J )) ⊂ O

Singular points of V (I)
≈ q3o−2t−n−1 singular points of V (I), and P(x) = 0, with qo−1 candidates.

Expected cost: O(qn−o+2tnω). Same as Kipnis Shamir [KPG’99] attack against UOV+̂.

Singular points of V (J )
≈ q3o−t−n−1 singular points of V (J ), with qo−1 candidates.

Expected number of trials: O(qn−2o+t) but P(x) ̸= 0.

Can we decide “x ∈ O?” faster than O(qtnω)?

17/23



From singular points to a key recovery attack

V (I) is the UOV+̂ public key variety, V (J ) is the underlying UOV variety.
Singular points (still) leak the trapdoor

Sing(V (I)) ⊂ Sing(V (J )) ⊂ O

Singular points of V (I)
≈ q3o−2t−n−1 singular points of V (I), and P(x) = 0, with qo−1 candidates.

Expected cost: O(qn−o+2tnω). Same as Kipnis Shamir [KPG’99] attack against UOV+̂.

Singular points of V (J )
≈ q3o−t−n−1 singular points of V (J ), with qo−1 candidates.

Expected number of trials: O(qn−2o+t) but P(x) ̸= 0.

Can we decide “x ∈ O?” faster than O(qtnω)?

17/23



From singular points to a key recovery attack

V (I) is the UOV+̂ public key variety, V (J ) is the underlying UOV variety.
Singular points (still) leak the trapdoor

Sing(V (I)) ⊂ Sing(V (J )) ⊂ O

Singular points of V (I)
≈ q3o−2t−n−1 singular points of V (I), and P(x) = 0, with qo−1 candidates.

Expected cost: O(qn−o+2tnω). Same as Kipnis Shamir [KPG’99] attack against UOV+̂.

Singular points of V (J )
≈ q3o−t−n−1 singular points of V (J ), with qo−1 candidates.

Expected number of trials: O(qn−2o+t)

but P(x) ̸= 0.

Can we decide “x ∈ O?” faster than O(qtnω)?

17/23



From singular points to a key recovery attack

V (I) is the UOV+̂ public key variety, V (J ) is the underlying UOV variety.
Singular points (still) leak the trapdoor

Sing(V (I)) ⊂ Sing(V (J )) ⊂ O

Singular points of V (I)
≈ q3o−2t−n−1 singular points of V (I), and P(x) = 0, with qo−1 candidates.

Expected cost: O(qn−o+2tnω). Same as Kipnis Shamir [KPG’99] attack against UOV+̂.

Singular points of V (J )
≈ q3o−t−n−1 singular points of V (J ), with qo−1 candidates.

Expected number of trials: O(qn−2o+t) but P(x) ̸= 0.

Can we decide “x ∈ O?” faster than O(qtnω)?

17/23



From singular points to a key recovery attack

V (I) is the UOV+̂ public key variety, V (J ) is the underlying UOV variety.
Singular points (still) leak the trapdoor

Sing(V (I)) ⊂ Sing(V (J )) ⊂ O

Singular points of V (I)
≈ q3o−2t−n−1 singular points of V (I), and P(x) = 0, with qo−1 candidates.

Expected cost: O(qn−o+2tnω). Same as Kipnis Shamir [KPG’99] attack against UOV+̂.

Singular points of V (J )
≈ q3o−t−n−1 singular points of V (J ), with qo−1 candidates.

Expected number of trials: O(qn−2o+t) but P(x) ̸= 0.

Can we decide “x ∈ O?” faster than O(qtnω)?
17/23



Adapting “x ∈ O?” to UOV+̂ efficiently

Previous result for UOV [P. 2024]
Decide x ∈ O? in polynomial time: x ∈ O =⇒ O ⊂ Tx V .

Tangent spaces again
x ∈ O =⇒ O ∩ TxV has large dimension.

Restricting to the tangent space TxV
P|Tx V (x) is an easy UOV+̂ instance if x ∈ O.

−→ Decide in polynomial time.
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New attack on UOV+̂/VOX
[Patarin, Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud 2023]

x ∈ O? in polynomial time [P. Eurocrypt 2025]

Decide x ∈ O? using O
((n−o+2t−3

4
)2(n−2o+2t+1

2
))

⊂ O(n10) arithmetic operations.

Singular points attack and asymptotic result [P. Eurocrypt 2025]
Singular points of V (J ) leak the trapdoor without inverting S.

O

qn−2o+t︸ ︷︷ ︸
# trials

·
(

n − 2o + 2t − 3
4

)2(
n − 2o + 2t + 1

2

)
︸ ︷︷ ︸

Cost of each trial from x∈O?

 .

Previous result
This attack improves the Kipnis-Shamir attack which required:

O(qn−2o+2tnω)
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Practical results and bit complexity

Parameters I III V
log2 gates 239 241 243

Time 2.3s 7.1s 16.4s

Figure 1: x ∈ O? with msolve1 on UOV+̂.
Intel i7 @ 2.80GHz, 8GB RAM.
1msolve.lip6.fr Implementation under MIT licence

Parameters I III V
Security level (log2 gates) 2143 2207 2272

Kipnis-Shamir (log2 gates) 2166 2233 2313

This work (log2 gates) 2140 2188 2243

Figure 2: Full attack on UOV+̂.

Cryptanalysis

• Initial UOV+̂ parameter sets do not meet NIST security requirement.
• We propose alternative parameters for UOV+̂ achieving between 27%-44% (expanded)

public key size reduction compared with UOV.

Can we do better?
Special case of UOV+̂ called VOX with additional structure was submitted to NIST.

Can we exploit that structure to improve our attack?

20/23
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Practical attack on VOX [Patarin, Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud 2023]

Dimension computation for VOX, seen as QR-UOV+̂(q, n, m, t, ℓ)

QR compression enables big field attack: UOV+̂(qℓ, m/ℓ, n/ℓ, m, t) defines a variety that
contains O ∩ V (G) but it should be the empty variety for a generic system.

Initial VOX parameters are insecure
MinRank attack [Furue, Ikematsu 2023]
Direct attack [P. 2024b]

Parameters I III V
ℓ 6 7 8
ℓ′ 6 7 8

Time 0.03s 0.11s 0.32s

Subfield attack [P. 2024b]
Alternative parameters exposed to direct
attack through subfields Fqℓ′ ⊂ Fqℓ .

Ic IIIa Vb
9 15 14
3 5 7

400h1 83.4s 12.4s
Timing for the subfield attack on VOX, on Intel i7 @ 2.80GHz 8GB RAM with msolve.

Implementation available under MIT licence.
1on Intel Xeon E7-4820, at 2.00GHz, peaking at 54.3GB RAM usage.
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Future and on-going work - 1

Precomputations for undetermined systems
Task: Reduce MQ(n, m) to MQ(m − k, m − k).
For UOV, k = 1 in any field [Cheng, Hashimoto,
Miura, Takagi 2014]. Can we go beyond k = 1?
−→ WIP: Adapt work of Reid for k = 2.

Genericity results on UOV
Are non-generic UOV keys weaker?
Generalize genericity results to all UOV variants.
−→ ex : non-radical ideal implies easier attack?

Linear polynomials in Gröbner bases
If J radical and V (J ) ⊂ O, then DRL Gröbner
bases of J contain linear polynomials.

Generators
degree d

Rewriting rules
degree d + 1

Gröbner basis
algorithm

Reductions

no new
generators

linear algebra
Faugère’98 ’02

Xi · g

non-zero
elements

linear
generators
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Future and on-going work - 2

Cryptanalysis of MAYO [Beullens 21]
Small dimension of secret subspace defeats
UOV attacks.

• Algebraic structure induced by MAYO’s
whipped-up transform?

• Exploit large pre-image of signatures in
EUF-CMA attacks?

Signature (bytes) Public key (bytes)
UOV-Ip 128 43 576
MAYO-1 454 1420
MAYO-2 186 4912

Figure 3: Sizes at security level one.

Polar varieties of UOV
V = V (⟨p1, p2, p3⟩)

crit(πA, V ) := {x ∈ V , dxπA not surjective}

O⊥ ⊂ A =⇒ O ⊂ crit(πA, V )
O ⊂ crit(πA1 , V ) ∩ · · · ∩ crit(πAℓ

, V )
(
⋂

crit(πAi , V )) \ Z = crit(
⋂

πAi , V ) \ Z
−→ Dimension, degree and computational

cost understood for a fixed projection.
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Proposed UOV+̂ parameters

Level q, o, v , t epk gain vs UOV
I 251, 48, 55, 6 36%

III 1021, 70, 79, 7 44%
V 4093, 96, 107, 8 27%



Genericity in the Zariski topology

Zariski topology on Kn

Zariski-closed sets are algebraic varieties.
A property is Zariski-generic if it holds on a
non-empty Zariski-open set.

Example: generic smoothness
The curve of equation Y 2 − X 3 + 3X − 2 = 0 is
singular. Are all curves of equation
Ea,b : Y 2 − X 3 − aX − b = 0 singular?

Methodology
Consider a, b as variables and study the equation JacE (a, b) = (0, 0).

JacE (a, b) = (0, 0) ⇐⇒ δ(a, b) = 4a3 + 27b2 = 0.
Therefore, if the discriminant δ(a, b) is non-zero, Ea,b is smooth.

Examples of generic properties of UOV ideals and varieties:
• UOV keys generically generate radical ideals of the expected dimension.
• UOV varieties are generically equidimensional complete intersections.
• UOV varieties are generically smooth... outside of O.
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How many equations characterize the secret?

Let δ(n, s, r) = (r + 1)(n − r) − s
(r+2

2
)

The Debarre and Manivel Bound1 [Debarre, Manivel 1998]
Let X be a generic complete intersection of m quadrics of rank n.

• If δ(n, s, r) < 0, then X contains no (proj.) r -dimensional subspaces
• Otherwise, δ(n, s, r) is the dimension of the variety of linear spaces included in X .

Application to UOV
If α = n

s is a constant, then a UOV secret is characterized by a constant number of
polynomials from the public key.
For practical parameters, 3 or 4 polynomials are enough.

1The original statement is for arbitrary degrees.
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